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Contents
● History and motivation for accelerators

● Beam properties – transverse emittance

● RF acceleration, longitudinal dynamics, 
phase stability

● Cyclotrons and synchrotrons

● Strong focusing, transverse dynamics
beam transport

● Beam instrumentation – Wednesday 
(20 min)

● Sarajevo Linac project – Friday 
(20 min)

Other presentations this week:

● Introduction to accelerators and medical 
machines (Maurizio, 1.5 h)

● Linear accelerators (Giovanni, 45 min)

● Injection to synchrotrons (Elena, 20 min) 

● Beam extraction (Rebecca, 30 min) 

● Ion sources (Nadia, 30 min)

● Gantries and Beam Delivery (Elena, 45 min)

● Low energy accelerators (Milko, 45 min)

● Sarajevo Linac project:

– Ion Beam Analysis (Fehima, 15 min)

– Low energy beam transport simulations 
(Benjamin, 10 min)
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Methods of science
● Observation of nature:

– Astronomy – purely observational science

– Physics – e.g. Dark Matter search (XENON)

● Controlled experiments:

– Many types of experiment, rich methodology

– Various tools, including accelerators

 

e.g. lasers are very important 

tools of modern physics: 

quantum mechanics, atomic 

physics, ultra-fast chemistry, 

etc 
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Microscopes
● Optical microscopes invented in 17th century

● Resolution 200 nm determined by wavelight length 
(diffraction limit λ/2, optical λ=400-800 nm)

● Bacteria size ~ 0.5-2 µm – seen by light microscopes, 
but SARS-Cov-2 virus size ~100 nm

● Crystalline structures need sub-nm resolution  

● One could use shorter wavelengths: X-ray Crystallography 
(not microscopy – difficult optics)

● Bragg’s law 1912, by William Henry 
- father and William Lorentz – son

● X-ray λ=0.1 nm

● BTW Bragg father discovered 
Bragg peak in 1903
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Rutheford experiment
● Electrons are also waves (de Broglie, 1924), use them 

instead of light (E. Ruska, 1931) 

● Electron microscopes can reach: 0.1 nm resolution – atom 
size; they work on normal objects (not only crystals)

● What if we want to look inside atoms? Photons and 
electrons are interacting with other electrons in the atom.

● Rutheford experiment (1908) – use alpha particles – they 
are heavy and penetrate through electrons

● Rutheford (+Geiger+Marsden) used Radon-222, which 
decays emitting alpha with Ek=5.5 MeV

● Experiment lead to discovery of nucleus and further to 
discovery of protons (1919) and neutrons (1932)

● Note: Beam of particles can be generated from 
radioactive source, but we have little control on it

● Positrons, muons – discovered in cosmic radiation

Carbon fibre damaged by SPS 
beam, 5-10 µm diameter.
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Why do we like E=mc2?
● Since Rutheford – enormous progress in nuclear physics thanks to accelerators 

● E.g. discovery of new isotopes, often short-living 
and non existing in nature, or new particles

● New matter is produced from energy

● Why creation of something what does not exist 
in nature is important ?

– Because those particles really existed during 
Big Bang shaping our World

– Because they exist now, in form of virtual particles

● Virtual particles born from vacuum for a short moment

– Disappear after Δt≤h/2E

– Unless they interact/decay as e.g. in β-decay (60Co)

m 4.7 MeV 80 GeV 0.5 MeV
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E=mc2

We have to do accelerator experiments 
if we want to understand the world around us
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Accelerators in industry and medicine
● Ion implantation

● Ion beam analysis

● Electron beam material processing

● Radioisotope production (also medical)

● Neutron generation

● Radiotherapy, radiosurgery

● Noninvasive diagnostics

Corrosion for implanted 304 SS
(A. Nikmah et al 2019 IOP Conf. Ser.: 
Mater. Sci. Eng. 515 012018)

Öztürk, O. (2014). “Structural and Magnetic Characterization of Nitrogen Ion Implanted Stainless Steel and CoCrMo 
Alloys.”
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What is a beam?
● Accelerators are producing beams, so what is a beam?

● An ensemble of particles moving in the same direction

● Characterized by:

– Particle type (usually monoparticle)

– Intensity

– Particle energy and energy spread

– Transverse size and divergence (emittance)
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Particle types
● Electrons (the easiest, e.g. X-ray tube), positrons

● Protons, antiprotons

● Ions, e.g. 4He2+, 12C6+, all isotopes and charge states, 

● also exotic and radioactive beams eg. 6He2+ (τ½=0.8s) and negative ions (eg. H-)

● Compound particles eg. CH3
+

● Neutral particles (eg. neutrons, neutrinos or photons) are produced as secondary beams
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Particle energies
● Energy is conveniently expressed in electron-volt (eV) and 

for ions in eV/u (per nucleon)

● For some studies particles are deccelerated down to meV 
energies and trapped (e.g. anitmatter)

● The highest beam energy (per particle) is at LHC:  
6.5 TeV proton beams 

● Total energy stored in beams: 362 MJ 
(equivalent of 77,4 kg TNT!)

● Interestingly cosmic rays reach much higher energies: so 
called cosmic accelerators are probably driven by 
expanding magnetic field of exploding stars (Fermi 
acceleration)

● Beams are not monoenergetic; typically we talk about 
momentum spread Δp/p~10-3 

LHC

Oh-My-God particle, 50 J
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Beam intensities and time structure 
● Beam is typically produced as continous from 

the ion source and bunched in the accelerating 
structures

● Therefore ion source intensity is given mA of DC 
current; in the linac it is peak current and pulse 
duration; in synchrotron it is easier to talk about 
number of circulating particles

● Ion source can reach 65 mA currents, numbers of 
circulating particles can be in range 1-1014

● Bunch length: from DC to 1 ps
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Transverse size 
● Transverse sizes of beams can vary:

– nanometers (10-9 m)- electron beam litography

– micrometers (10-6 m) – synchrotron light sources

– millimeters (10-3 m) – eg. LHC

– centimeters (10-2 m) – hadron therapy synchrotrons

– meters – neutron, neutrino beams

● Beam size changes when traveling through accelerator 
– for instance it is usually focused on target

● It is better to use about beam emittance
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Phase space and emittance
● Beam phase space is defined by 

it transverse position (x) and divergence (x’)

● Both distributions have usually 
approximately gaussian shape

● The surface of the ellipse 
containing 95% of the beam 
particles is called emittance (ε95%)

● People also use RMS-emittance (εRMS), 
surface of ellipse containing 1 Root Mean 
Square (RMS) of the particles 
(40% for 2D gaussian distribution)

● In lack of acceleration and dissipative processes emittance is constant 
(Liouville’s theorem) → ion source must produce good emittance as it cannot be 
(easily) decreased
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Understanding the beam phase space



May 18, 2021 Sapinski, Accelerator physics 16

Emittance and acceleration
● During acceleration (energy ramp) the longitudinal momentum increases while transverse 

remains the same

● Therefore the divergence of particles decreases, so the emittance shrinks!

● Normalized emittace is conserved during acceleration:
                          εn = βγεRMS

● Units: [mm*mrad], [π*mm*mrad]

● Typical values for medical ion beams: 0.5-1.0 [mm*mrad]

● Synchrotron light sources emittance reach ~1 nm*mrad
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I hope at this point you understand 
the role of accelerators in our 

civilization and variety of beams 
produced.

You got familiar with a concept of 
beam emittance.

Let’s go to some details.



May 18, 2021 Sapinski, Accelerator physics 18

Acceleration techniques
● Which field to use for the acceleration?

electric force: F=qE                  - acts along the field lines
magnetic force: F = q(v × B)   -  acts perpendicular to field lines 

                              and to particle velocity – no  acceleration  

● Force magnitudes:

– electric: 20 MV/m(*), F=3.2 pN

– magnetic: 1.5 T(*), v(p@20 keV)=0.007c, F=0.5 pN  

(* typical values)       but at v→c: F=70 pN (!)

● Electrostatic acceleration:

– Continuous beam, small energy spread

– Easy to tune energy
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Electrostatic acceleration
● Tandem accelerator, doubling the energy

● Energies in range 1-40 MeV

● Energy spread 10-4

● Electrostatic lenses keep the beam focused
(first mention of transverse focusing)

● Still used for instance:

– Ion Beam Analysis

– as pre-accelerators for larger facilities

– ion implantation

● See Giovanni’s, Aris’es and Fehima’s 
presentations
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Acceleration techniques: RF
● MV electrostatic generators are huge

● Safe handling these voltages is difficult

● Idea: use oscillating electric field -  Gustav Ising (1924)

● First device: Rolf Widreoe (1928)

● Note: beam is bunched and energy tuning is not as easy 
as for electrostatic machines

● Common name: Drift-Tube Linac (DTL)

Tesla coil (actually AC)
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Energy gain:
E=qVRFsin(φ),φ - phase
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Acceleration techniques: RF
● With increase of energy, the drift tubes gets longer, 

higher frequency allows them to be shorter (careful, 
the first drift tubes can be too short)

● Typically MeV ion beams require frequencies 
36-750 MHz, and elements of the system work like 
antennas emitting most of the energy

● Therefore the accelerator is enclosed in  resonant 
tank and fed by RF source (no need to make 
electrical connections to the drift tubes)

Bevatech, 217 MHz

GSI UNILAC, 108 MHz
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Very high frequencies
● Higher frequencies allow for smaller linac and higher acceleration gradients

● Maximum frequency depend on particle velocity and accuracy of machining of structures

● For electrons, which are fast relativistic (1 MeV – 95% c) the “golden standard” frequency 
is 3 GHz (SLAC)

● CLIC developments at CERN (e.g. new industrial CNC machines developed for this project) 
pushed it to 12 GHz

● For protons new developments: 

– 750 MHz (CERN, low energy) 

– 3 GHz (AVO-ADAM, 
proton therapy, 70-230 MeV)

– Accelerating gradient >30 MV/m

AVO-ADAM
SCDTL
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Tuning the RF cavity
● Phase stability = longitudinal focusing

● Particles arriving too early (higher energy) to 
the accelerating gap experience smaller 
accelerating field

● Particles arriving too late (lower energy) 
experience higher accelerating field

● For synchrotrons it is a bit more complex 
because the different energy means different 
orbit and depends on beam energy and 
machine lattice (transition) – M2 becomes 
stable

● The stable particle position (RF set-point, 
optimal phase ) is usually found by optimizing 
the beam transmission through the linac
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Longitudinal phase space
● Particles oscillate around the synchronous 

particle position

● This oscillation is called synchrotron 
oscillation, mainly because it is rather slow 
oscillation so particle must be circulating in a 
synchrotron in order to observe it

● Particles stay within separatrix

● Longitudinal phase space: energy-phase

● Longitudinal emittance is the phase space area 
including all particles 4⸳π⸳σΔE⸳σΔt

– Unit [eV⸳s]
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Linear versus circular machines

● In linear machine each accelerating gap is used once, high accelerating gradient is 
important; in circular machine beam comes back to the same cavity multiple times, 
gradient is not so crucial

● Linear machine: distance between gaps increases; circular: frequency of the cavity 
increases 
(in non relativistic regime)
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Circular machines: cyclotrons
● Proposed by E.O. Lawrence (1929) and 

build by Livingstone (1931)

● Vertical magnetic field bends the particle 
trajectory

● Gap between the dees is used for 
acceleration

● Radius of the particle increases with its 
energy

● Lorentz and centrifugal forces balance:

– qvB=mv2/r

– ω = v/r = qB/m 
(Larmor frequency)

● Modern cyclotrons: multiple cavities, RF 
frequency ~100 MHz

Livingstone 
cyclotrone, 
diam. 10 cm.
80 keV protons
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Limitations of cyclotrons
● For relativistic particles mass increases: 

ω = v/r = qB/m(E)

● Need to increase magnetic field 
(isochronous) or frequency 
(synchrocyclotrons)

● At high energies large vacuum chamber 
becomes difficult (large disc with vacuum)

● Most of proton therapy machines are 
based on cyclotrons (Varian, IBA)

● The extraction energy is constant 
(e.g. 230 MeV), must be degraded if 
needed
(e.g. for shallow tumors)

PSI cyclotron, isochronous, sectored, AVF 
(azimuthally varied field)
protons at 590 MeV,  Pbeam = 1.3 MW
Diameter 15 m
4 RF cavities, 8 magnets
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Betatron
● Electrons are relativistic at 500 keV 

– classical cyclotron not useful

● Magnetic field increases with energy, orbit is 
constant

● Energy is transmitted through transformer effect: 
increasing magnetic field generates vortex 
electric field which accelerates electrons

● Acceleration takes place over ¼ of the RF cycle

● Betatrons were used to produce electron 
beams up to 300 MeV

● Similar idea of final smooth acceleration is used for 

slow extraction in CNAO and MedAustron  
(betatron core)
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Synchrotron
● Betatron acceleration method is limited 

by magnet size and iron saturation

● For larger energies need to split the 
magnets

● And use much more efficient RF-
acceleration

● Synchrotron idea: Vladimir Veksler (1944)

● Origin of the name: synchronous change 
of RF frequency with magnets’ current

● First electron synchrotron: Edwin McMillan 
(1945, independently from Veksler)

● First proton synchrotron: Marcus Oliphant 
(1952)
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Future of acceleration techniques
● The best cavities reach 50 MV/m (less in regular operation e.g. 30 MV/m European XFEL, 

DESY, Germany)

● Vacuum breakdown limits possible fields

● Idea: use plasma – it is already broken down

● Separate electrons from ions using strong laser pulse, 
generate locally fields of 100 GV/m 
(factor 5000!)

● Currently plasma acceleration, dielectric 
acceleration, laser ion sources are very active 
fields of research
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Accelerators started with 
electrostatic machines.

The crucial development was RF 
resonant acceleration.

Phase stability keeps beam bunched.
Cyclotrons and Synchrotrons.

The future may be in plasma 
accelerators.
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Beam trajectory 
● Beam can be steered using electric or magnetic fields                    

● Magnetic field is more effective for high velocities, because:                                      
 F = q(v × B)

● Dipole magnets steer the beam

● Particles of the same 
magnetic rigidity have 
the same trajectory:

– p/q = Bρ, ρ-bending radius 
– 12C6+ and 4He2+ can circulate 

in the same machine having 
the same kinetic energy per 
unit mass eg. 430 MeV/u

yoke

coils
good field region
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Beam stability
● Beam is naturally divergent; think about a “beam of light” (from a lamp) and a 

diaphragm:

● Set of lenses focus the beam of light
● BTW laser light stays “collimated” without lenses: 

this is because of spatial coherence of 
photons in the laser beam

● Can we do similar with ion beams? Not really! 
Ions are fermions not bosons, they are charged 
(Coulomb repulsion forces);

● The crystalline ion beams reach limits of ion beam 
emittance, beam density
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Weak focusing
● The principle – radial field gradient leads to forces which focus the beam

● This mechanism is called weak focusing 

● Every dipole magnet gives vertical focusing at its edges

● In synchrotrons, which store the beam over 
long time, weak focusing is not enough!

Weak focusing in cyclotron
Cosmotron – 3 GeV proton 
synchrotron, BNL 1953
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Strong focusing
● Idea: N. Christofilos, 1949 (patented but not published), rediscovered independently 

by E. Courant, M. Livingston, H. Snyder in 1952

● Strong focusing principle: the net effect on a particle beam of charged particles passing 
through alternating field gradients is to make the beam converge
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Quadrupoles
● Quadrupole magnet provides focusing in one plane and 

defocusing in other

● F = qvB(x) = qv(g*x)

● Magnetic field gradient:

● Gradient normalized to rigidity:
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Synchrotron cells
● As we’ve seen we need a system of lenses (i.e. of quadrupoles) 

● Focusing-Defocusing (FODO) – the easiest elementary cell layout of a synchrotron

● Dipoles, placed between quadrupoles 
- add weak focusing

● Real example: LHC FODO
184 FODO cells in LHC arcs

● Other cells often used (e.g. multi-bend achromat 
to minimize beam size in light sources)
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Equation of transverse motion (I)
● First: reference system

● Equation of motion: position of particles in function of time x(t), x’(t)

● Particles move through lattice with constant velocity, so we replace: 
time (t) →position along the machine (s)

– dx/dt = dx/ds*ds/dt = (dx/ds)*v

– d2x/dt2=d/dt(dx/ds)*ds/dt+dx/ds*d2s/dt2=(d2x/ds2)*v2

● Equation of motion F=ma=qvB: 

– d2x/ds2=qv(g*x)/mv2;   k=-g/(p/q); p/q - rigidity

– d2x/ds2=-kx  (focusing, harmonic oscillator!)

● Solution is periodic: x(s) = x(0)*cos(k½x)+x’(0)*sin(k½x)
(focusing)                     x’(s) = x(0)*k½*sin(k½x)+x’(0)*k½*cos(k½x)

reference orbit 
or trajectory
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Equation of transverse motion (II)
● For defocusing quadrupole:  x(s) = x(0)*cosh(k½x)+x’(0)*sinh(k½x)

                                                       x’(s) = x(0)*k½*sinh(k½x)+x’(0)*k½*cosh(k½x)

● General equation of motion (Hill’s equation):
                                  x’’(s) + K(s)x(s) = 0
where Kx=1/ρ + k (includes weak focusing)

● K(L+s)=K(s) – where L is lattice period (eg. length of FODO cell)

● General solution describes quasi-harmonic movement called 
betatron oscillations:

Jx and ϕ – depend on 
initial conditions
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Beta function
● betatron oscillations – transverse oscillations of particle in the beam around the design orbit 

(reminder: synchrotron oscillations are longitudinal oscillations around the stable RF phase)

● Beta function β(s) describes amplitude of betatron oscillations along the accelerator or 
transfer line, often called beam optics

● Beam size (often called beam envelope): 
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Phase advance and tune
● The difference of betatron motion phase between two points is called phase advance: 

● Number of betatron oscillations per turn is called tune:

ψ=90º – LHC FODO cell
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Tune and resonances
● Tune depends on optics (setting of quadrupoles)

and can be regulated

● Each small field errors or magnet misalignments 
create perturbation of the beam trajectory 

● If tune is integer (N) or N/2, N/3... the effect of those 
perturbations add up every turn, machine is in resonance 
and operation is unstable

● This is bad for storage rings but is also a basics of 
resonant slow extraction used in medical machines
to extract beam to the patient

● e.g. CNAO/MedAustron working point: Qx,y=(1.672,1.72)

● Qx=1.666 is third order resonance which can be excited by 
sextupole magnets (see later)
                                                            GSI SIS18 tune diagram:
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Dispersion
● Transverse and longitudinal motions are not independent; they 

are coupled via dispersion

● Dispersion is a deviation of the particle trajectory due to 
momentum difference:
           

                  Dx(s)=dx(s)/(dp/p)

● Similar for angle:
           D’x=dx’/(dp/p)

● Dispersion leads to increase of beam size:

● Dispersion-free regions are often needed: minimize beam size 
and movement on the patient, maximize luminosity, measure 
emittance

There are many ways to 
remove dispersion, eg. 
double-bend achromat (DBA):
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Chromaticity and sextupoles
● As dispersion is a change of trajectory with the momentum deviation, chromaticity is change of 

machine tune with the momentum deviation:  Q’=dQ/(dp/p) [dimensionless]

● Reminder: typical momentum spread in a synchrotron (Δp/p ~ 10-3)

● Chromaticity is controlled by sextupole magnets installed in dispersive region

● Typically small negative chromaticity is needed to make machine stable

● Higher order effects demand octupoles, decatupoles to correct
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Twiss parameters and beam ellipse
● Beam ellipse can be described in terms of emittance and Twiss parameters 

(called also Courant-Snyder parameters):

● Alpha (α) is slope of beta; 

● “parallel beam”: α=0

● Gamma is dependent parameter 
and it is beta for angle
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Beam transport
● Matrix formalism is used to transfer the

beam from one element to another:

● e.g. transfer matrix for focusing quad:

● Transport through multiple elements:

● These are first steps in designing a synchrotron 
or a beam line Using this formalism, or tracking of 

the particles in magnet fiels, 
programs like MAD-X, allow to 
compute Twiss parameters and 
dispersion
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Beam transport - 6D
● Equation of ellipse can be also written in form of matrix Σ:

                              [x]TΣ[x] = 1

● Beam matrix Σ(s) describes the beam ellipse at a given
position; determinant of the ellipse is emittance

● Beam matrix is transformed using matrix formalism:
 Σ(s) = M Σ(0) MT

● Beam has 2 independent parameters per dimension, 
so total 6-D is needed to write full beam matrix

● Transverse-longitudinal coupling via dispersion (D) 
and D’, here included in η
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Strong focusing principle allows to 
construct stable storage rings and 

transport the beam efficiently.
Things to remember: 

synchrotron cells, Twiss parameters, 
dispersion, tune, chromaticity, 

resonances and matrix formalism
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Conclusions
● Accelerators are one of the most important tools in science, medicine and industry

● They produce beam of particles with a given energy and emittance

● RF acceleration allows to reach very high energies; phase stability assures longitudinal focusing

● Strong focusing made possible large machines able to produce, transport and store high 
intensity beams for hours (or days)

● The most important concepts: elementary cell, Twiss parameters (α,β) , beam phase space, 
beam ellipse, dispersion, tune, resonances, chromaticity and matrix formalism 



Thank you for your attention!

Acknowledgments: 
- Preparing these slides I used presentations of several CERN 
Accelerator Schools and summer student lectures 

Please contact me if you have questions concerning this lecture: mariusz.sapinski@cern.ch
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RF sources
● High-frequency transmission lines are waveguides, not cables, 

because cables are antennas

● (But… the simplest waveguide 
is a concentric cable)

● RF accelerators need 
powerful RF sources 

● The RF sources are closely related to II Wold War radars

● One of the first devices, still in use, was klystron, developed by Varian 
brothers (yes, they set up Varian company known for cyclotrons)

● Klystrons by themselves are small electron accelerators

● Trend: solid state RF generators
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Standing and travelling wave

Acceleration ~ 5 MV/m Acceleration ~ 30 MV/m
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Radio-Frequency Quadrupole
● DTL can accept ion beams from energy of hundreds 

of keV/u (limits on frequency and size of the tank)

● Ion sources provide ion energies of ~5-50 keV/u

● Acceleration in between is difficult, space charge 
forces act to dirupt the beam

● Electrostatic acceleration is a valid option, but

● RFQ proves to be a very efficient and compact  
acceleration element

● It provides focusing and smooth bunching

● Increases the transmission from source to DTL from 
50% to 90% 
- crucial for high-power machines
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