

COSYLAB Basics of Accelerator Control Systems

MATEJ POLZELNIK (MATEJ.POLZELNIK@COSYLAB.COM)

20. 5. 2021

Who are we?

• 2001 Cosylab is founded after successfully developed a control system for a German accelerator ANKA

- 10 locations worldwide
 - USA, China, Korea, Japan, Ukraine, Slovenia, Switzerland, Sweden, France, Russia (Siberia)

- 200+ people
 - 150 + highly skilled developers and engineers
 - 22 PhD holders from STEM fields

Customes From All Worldwide

- 1. Canadian Light Source CSL (CA)
- Brookhaven National Laboratory BNL (US)
- 3. Facility for Rare Isotope Beams FRIB (US)
- 4. Advanced Photon Source APS at Argonne National Laboratory (US)
- 5. Stanford Linear Accelerator Center SLAC (US)
- 6. Ferni National Accelerator Laboratory FNAL (US)
- 7. Varian medical systems (US)
- 8. Los Alamos National Laboratory LANL (US)
- 9. Indiana University (US)
- 10. National Instruments NI (US)
- 11. Spallation Neutron Source SNS (US)
- 12. National Radio Astronomy Observatory NRAO (US)
- 13. Thomas Jefferson National Accelerator Facility JLAB (US)
- 14. Brazilian Synchrotron Light Laboratory (LNLS)
- 15. Atacama Large Milimeter Array ALMA (RCH)
- 16. IFIN-HH (RO)
- 17. Cividec Instrumentation GmbH (AT) 18. EBG MedAustron (AT)
- 19. Sinchrotrone Trieste ELETTRA (IT)
- 21. Instituto Nazionale di Fisica Nucleare INFN-LNL (IT) 21b. Instituto Nazionale di Fisica Nucleare - INFN-LNF (IT)

- 22. CERN European Organization for Nuclear Research (CH)
- 23. Paul Scherer Institut PSI (CH)
- 24. Linde Kryotachnik (CH)
- 25. Maatel Scientific Instrumentation (FR)
- 26. Xenocs (FR)
- 27. French Atomic Energy Commission (FR)
- 28. International Thermonuclear Experimental Reactor ITER (FR)
- 29. European Synchrotron Radiation Facility ESRF (FR)
- 30. bioMérieux (FR)
- 31. Synchrotron Soleil (FR)
- 32. Ion Beam Applications IBA (B)
- 33. Procon Systems (ES)
- 34. CELLS ALBA (ES)
- 35. Ciemat (ES)
- 36. Observatorio Astronómico Nacional OAN (ES)
- 37. ESS Bilbao (ES)
- 38. Rutheford Appelton Laboratory (UK)
- 39. Daresbury Laboratory (UK)
- 40. Diamond (UK)
- 41. FMBO Oxford (UK)
- 42. Siemens (DE)
- 43. ACCEL (DE)

- 44. Electron accelerator ELSA (DE)
- 45. Helmholtz Zentrum Berlin fur Materialien und Energie (DE)
- 46. European Molecular Biology Laboratory EMBL (DE)
- 47. Physikalisch-Technische Bundesanstalt Berlin PTB (DE)
- 48. Jenoptik AG Jena (DE)
- 49. Forschungzentrum Karlsruhe (DE)
- 50. Dortmunder Elektronen Speicherring Anlage (DE)
- 51. Deutsches Elektronen-Synchrotron DESY (DE)
- 52. European Southern Observatory ESO (DE)
- 53. Gesellschaft für Schwerionenforschung (DE)
- 54. Feinwerk-und-Messetechnik GmbH (DE)
- 55. Imtech Vonk (NL)
- 56. Kernfysisch Versneller Institut KVI (NL)
- 57. Danfysik (DK)
- 58. European Spallation Source (SE)
- 59. MAX-lab, Lund University (SE)
- 60. J. Stefan Institute (SI)
- 61. ISKRATEL (SI) 62. BioSistemika (SI)
- 63. National Research Centre "Kurchatov Institute" (RU)
- 64. Turkish Accelerator and Radiation Laboratory at Ankara (TUR)
- 65. Tsinghua University (CN)

- 66. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (CN)
- 67. Southwestern Institute of Physics SWIP, Chengdu (CN)
- 68. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CN)
- 69. Pohang Accelerator Laboratory (KR)
- 70. Hiroshima University (IP)
- 71. Institute for Molecular Science (IP)
- 72. Riken (JP)
- 73. Repic Corporation (IP)
- 74. Nichizou Denshi Seigyo Kabushikigaisha (JP)
- 75. Japan Atomic Energy Research Institute JAERI (IP)
- 76. High Energy Accelerator Research Organisation KEK (JP)
- 77. The University of Tokyo (JP)
- 78. Hitachi Zosen (JP)
- 79. Japan Synchrotron Radiation Research Institute JASRI (IP)
- 80. NSRRC National Synchrotron Radiation Research Center (TW)
- 81. Raja Ramanna Centre of Advanced Technology RRCAT (IN)
- 82. Australian national nuclear research and development organisation ANSTO (AU)
- 83. Australian Synchrotron AS (AU)

Areas Of Expertise

- A lot of our work revolves around particle accelerator technologies
 - But also:
 - · Fusion reactors (e.g. ITER)
 - · Radiotelesopes (e.g. CTA, ALMA)
 - · Space (e.g. ESA, NASA)
 - · Industrial (e.g. Qualysense)
- We offer services and products which require expert knowledge
- We develop state-of-the-art hardware and software
- We **integrate** them into **mankind's most complex machines**
- Turnkey control system adapted for each accelerator with open source components
- Integration of subsystems and equipment into control system

How are particles acclerated and steered

- Electro-magnetic (EM) field
 - Electrical component accelerates/decellerates particles
 - Because the EM field is oscillating as a sine wave, particles are bunched together (one bunch on each sine period)
 - Magnetic component changes particle direction

Accelerator types - synchrotron

Accelerator types - linac

Accelerator types - cyclotron

Accelerator devices/systems

- Particle source (electron gun, proton/ion source)
- Vacuum removing particle obstacles
 - Vacuum pipe, a lot of vacuum pumps.
- Magnets steering and focusing of particle beam
 - Dipoles: bending
 - Quadrupols, sextupols: focusing (magnetic lense)
 - Focuses in one dimension, defocuses in the other, that is why quadrupoles always come in pairs rotated by 90 degrees.

Power Converters

Ion source

Dipole

- RF acceleration of particles
 - RF cavities (accelerating particles)
 - LLRF (regulation of EM field in cavities)
 - Klystrons (EM field amplifiers)
 - In recent years solid-state amplifiers are becoming more and more popular as a modern alternative to klystrons
 - Modulators (klystron's power supply)

Klystron

Klystron

- Cryo(genics) cooling down cavities or bending magnets for superconductivity
 - Cryoplant: basically a huge refrigerator for helium ©
 - Helium transfer lines
 - Cryomodules: encapsulate RF cavities in a cold environment Cryomodule

- Diagnostics look at the particle beam
 - Beam position monitor (BPM), beam loss monitor (BLM), beam current monitor (BCM), wire-scanner, ...

BPM

Electrode

Pick-up feed through

1 (T)

Pick-up feed through

Vacuum pipe

Electrode

- Timing and synchronization
 - RF reference all RF devices have a stable reference to which they regulate their output
 - Event timing system precise synchronization of devices with hardware triggers
 - Pico-second synchronization for light particles (electrons), nano-second synchronization for heavy particles (protons, ions)
 - · Solutions: Micro-research Finland, White Rabbit, homebrew

Event timing systems work like player pianos – playing out predefined sequences with extreme time accuracy

White Rabbit timing system

- Machine protection system (MPS)
 - Protection of accelerator devices (big cost if hardware destroyed by beam)
- Personnel safety system (PSS or. PPS)
 - Safety of human personnel (prevention of injury/death)
- Also experimental stations (sensors, motion control), target control (in case of neutron sources), undulators (in case of lightsources) ...

Cosylab's role: control systems

- Control System tiers:
 - Device/sub-system control
 - · IOCs with local device logic, controlling accelerator devices
 - Central CS systems
 - · Timing and synchronization
 - · Machine protection
 - Central CS services
 - Archiving
 - Logging
 - · Alarms
 - Authentication and authorisation
 - · Remote access
 - · Configuration management
 - · Scripting environment / commissioning support
 - Presentation
 - · Central UIs
 - Expert device UIs
 - Development environment
 - · Common frameworks, e.g. EPICS, Tango, ...
 - · Continuous integration
 - Deployment

Con. Fac. Control Boxes

ESS control system tiers

What does it take to build control system

- Be aware: control system is only **10%** of enitre project
 - Others: cooling, vacuum, power, RF...
- Skills needed
 - Technological and scientific knowledge
 - Good project management (coordination between teams)
 - Good system design and architecture (timing systems, MPS,..)
 - Hundreds of devices need to be controlled and monitores
 - Synchronization
 - Experience (which devices to chose for certain type of accelerators)

What does it take to build control system

- Services and products which require expert knowledge
- State-of-the-art hardware and software
- Integration of software and hardware into mankind's most complex machines
- Knowledge of Integration of subsystems and equipment into control system

Our contribution

MedAustron, Austria

- The most cutting-edge centers for cancer treatment and research

ADAM, Switzerland/UK

LIGHT system

spin-off

THANK YOU!

This material was prepared and presented within the HITRIplus Heavy Ion Therapy MasterClass school, and it is intended for educational purposes to facilitate students; people interested to use any of the material for any other purposes (such as other lectures, courses etc) are kindly requested to please contact the authors Matej Polzelnik, matej.polzelnik@cosylab.com

