PiNG – Pi, proton or $\mu \rightarrow$ **n**, γ

- 1. PiM1 beam at PSI
- 2. ToF neutron/gamma
- 3. Targets, design, ideas?

Alex Howard ETH, Zurich Geometrical Event Biasing Overview Geant4 Collaboration Workshop ESTEC 6th October 2010

Alex Howard, ETHZ – Geometrical Event Biasing– ESTEC 6th October 2010

PiM1 beam @ PSI:

- π^+ , π^- , **p**, **e**⁺, **e**⁻, decay μ^+ , μ^-
- Momentum selection from 80 MeV/c to 590MeV/c
 - 3.5MeV to 170MeV for proton $_{-}$
 - 21MeV to 433MeV for pions
- π -purity up to 99% (1% μ^+ , μ^-)
- Momentum:
 0.1% resolution, 2.9% FWHM
- Intensity up to
 4.4 × 10⁸ particles/s (!)

Schematic of set-up

"Toy" test - Timing

- Proton beam impinged on a lead and copper block to test timing of our DAQ system
- ToF gives clear cut between gammas and neutrons
- Secondary/independent test of the performance of neutron detector – efficiency and discrimination
- Trigger: Beam scintillators (B+T) together with large scintillator (V) after target as a veto for charged fragments and primary beam particles
 (B+T)-V

First ToF spectrum

~0.1ns precision for the fastest components (gammas, I hope!)

