
G4 Collaboration Meeting (2010/10/4) V. Daniel Elvira 1

Geant4 Computing

Performance Activities

V. Daniel Elvira (Fermilab)

for the G4 Users and Performance Teams

V. Daniel Elvira 2

The G4 Computing Performance Task

G4 Collaboration Meeting (2010/10/4)

Back in February 2010, J. Apostolakis asked me to organize a
G4CPT within the G4 Collaboration

Not a “Task Force” but an open ended activity organized as a
group with regular meetings every ~ 6-8 weeks

(a) Profiling to identify bottlenecks in Geant4 based on main stream
applications. We need to discuss profiling tools, what we want to
measure, metrics. EM, Geometry and hadronics are the areas
more involved in CPU usage.

(b) Code reviews geared towards improving computing performance
and coding practices.

(c) Establish computing performance activities with the medical and
space G4 communities.

(d) Identify issues in multi-core-multithread G4.

Charge

Not discussed
beyond the first
meeting – See
Tuesday plenary

V. Daniel Elvira 3

Ideas discussed during the first meeting

G4 Collaboration Meeting (2010/10/4)

• Define a set of profiling tests/metrics.

• Profile simple examples and big experiments regularly,
i.e. benchmark every candidate release/patch.

• Store information in a database for consistency and to
track history

• Important to have a profiling tool with few dependences
that can also be used outside of HEP.

• Identify unique features, advantages/disadvantages of
each profiling tool to define profiling strategy and guide
new users

V. Daniel Elvira 4

List of Top Problems to Investigate

G4 Collaboration Meeting (2010/10/4)

1. Memory Allocation
* Navigation (G. Cosmo working on a fix - ATLAS, CMS testing)
* Bertini (Mike Kelsey working on mem/speed improvements)

2. EM Physics Package
* Optimization of parameters in applications
* Revisit physics algorithms in Geant4 code: optimizations, approximations
* Multiple scattering
* Code review

3. Navigation speed and memory use in Voxel geometries and when handling large
numbers of materials (brought up by the medical community)

4. Ion-ion inelastic models speed and memory use (medical).
5. Propagation in Magnetic Fields

* Code review (done - no low hanging fruit from the programming side)
* Testing/validation/profiling new steppers (ATLAS is testing Nystrom)

6. Hadronic cross-sections
* Code review

7. Precompound/de-excitation
* Code optimization. Many log/power functions are called. Many classes.

Challenge: define, staff, initiate remaining projects

V. Daniel Elvira 5

G4CPT twiki

G4 Collaboration Meeting (2010/10/4)

https://twiki.cern.ch/twiki/bin/view/Geant4/G4CPT

https://twiki.cern.ch/twiki/bin/view/Geant4/G4CPT

Past reviews (FNAL team): CHIPS and propagation in field code

(documents linked from G4CPT twiki page)

Code Reviews

6G4 Collaboration Meeting (2010/10/4) V. Daniel Elvira

Most attendees to the G4CPT meeting agreed that
the EM physics code should come next, need to produce a charge
(coding practices, algorithms, physics approximations?)

K. Genser is, in principle, available for this but we need to agree on
what we want from him. It should be sorted out this week.

Profilers: FAST

G4 Collaboration Meeting (2010/10/4) 7V. Daniel Elvira

See M. Paterno’s presentation on Wednesday: usage, example
FAST documentation available at https://cdcvs.fnal.gov/redmine/projects/fast

(developed by the FNAL team: A. Baldacchi, J. Kowalkowski, M. Paterno. J. Torola)

Goal: Routinely profile Geant4 using simple and complex HEP simulation
applications (CMS chosen for obvious reasons) – K. Genser

Much of the tools and scripts and other machinery necessary for automation are
complete and working. Final integration and debugging are still underway. Based
on FAST (… previously known as SimpleProfiler)

FAST (Flexible Analysis and Storage Toolkit) features

• Set of tools for collection (Database) , analysis, display of performance data.
• Sampling based profiler that extracts call path, function call, library call.
• Graphical display of call paths, documented file format facilitates stat analysis.
• Profiles multi-process programs but not multi-thread.
• Few dependences.

<10% crash rate on CMS simulation application

Profilers: Perfmon

G4 Collaboration Meeting (2010/10/4) 8V. Daniel Elvira

See J. Apostolakis’ presentation on Wednesday: usage, example
For tool installation, unpack the following archive in your application directory:
http://dkruse.web.cern.ch/dkruse/G4_pfm.tar.gz

(HP tool, G4 work by Daniele Kruse, J. Apostolakis – CERN)

Goal: Routinely profile Geant4 using simple (20 GeV on calorimeter) and
complex HEP simulation applications (CMS) – Daniele Kruse

Fully automated procedure based on python script to instrument G4 user
applications with Perfmon (HP) to monitor Geant4: runs the application with
perfmon, analyze results (cvs output), check results with your favorite browser.

Perfmon features

• Modular Performance Monitoring. User Actions at the Step level to study
different parts of the code separately.
• Study interaction of application with hardware.
Counts hardware event conditions that happen within a processor while the
application is being run.

Profilers: IgProf

G4 Collaboration Meeting (2010/10/4) 9V. Daniel Elvira

See M. Kelsey’s presentation on Tuesday in the Hadronic Validation &
Development session: “Recent Improvements of Bertini Code”

(Work by M. Kelsey - SLAC)

Goal: Review, fix, optimize Bertini Cascade code (Hadronic Physics)

IgProf features

• Combines features of gprof and valgrind into common interface: CPU, memory.
• gprof report format for easy analysis
• No special compilation (uses shared-library substitution)
• Reports calls, memory churn (allocations), and memory leaks
• Text reports or navigable SQL-based Web files

Improvements

Run test jobs of Bertini with IgProf frequently to compare with last baseline.
Make IgProf available to G4.

Main issue is memory churn. Many millions cycles creating/deleting small objects,
passing/copying vectors. Fixes related to vector handling yielded:
5-8% reduction in memory churn in G4.9.3-ref-05.

Profilers: PTU from Intel

G4 Collaboration Meeting (2010/10/4) 10V. Daniel Elvira

(Work by David Levinthal – Intel, J. Apostolakis)

The Intel PerformanceTuning Utility (PTU) is a tool that dips into the
operating system and accesses information typically unavailable to other
profilers.

G4, CMS and ATLAS are working with David Levinthal (Principal Engineer –
Intel).

David’s example: ATLAS G4 application, 10 GeV photons or electrons, 1k events.

As a result of his studies, David is offering advise on how to optimize large HEP
software systems:

‐ Large OOP can suffer significant performance limitations (~50%), data parallel
might be better.
‐ Branching (large if-then‐else) within loops hurts performance (non optimal
use of units in the cpu).
‐ Pre-fetching hurts sometimes.
- Large number of calls to functions can be harmful. See J. Apostolakis’ presentation on Wednesday.

V. Daniel Elvira 11

G4CPT and the Space/Medical Communities

G4 Collaboration Meeting (2010/10/4)

• Space (R. Weller): geometry and physics are presently of greater concern
than absolute computational efficiency (speed/memory). While spacecraft
applications will benefit from optimizations for HEP detectors.

- Ion-ion nuclear reactions up to cosmic ray energies.
- Physics in integrated circuit sized objects.

• Medical (J. Perl): there are memory issues due to large number of
materials and voxels, speed issues due to the need to iterate for
treatment plans (~10 min). MGH Clinical Plan takes 240 CPU hrs, 12 hrs in
20 CPUs.

- Speed of navigation in Voxel Geometries.
- Speed of swapping in and out physics tables for large numbers of materials.
- Speed of physics models, particularly for ion-ion inelastic models.

The medical community does not expect G4 core developers to resolve their issues
but needs to rely on their statements on whether they’ll do it to make according
man-power allocations – No significant activity in the G4CP front yet but
interested in profiling tools with few dependences that can be used outside HEP.

• Report from a joint G4/ATLAS task force to identify
simulation bottlenecks: CERN-LCGAPP-2010-01

• Profilers: valgrind (call trees) and hephaestus (ATLAS
memory profiler):

– Priority: reduce CPU usage

– Also important: reduce memory churn (to reduce CPU)

• Main focus has been on “compromising” on details of the
physics performance to reduce CPU usage.

• Technical aspects of coding have been touched only
partially

ATLAS Simulation Performance

(from Andrea Dotti)

G4 Collaboration Meeting (2010/10/4) 12V. Daniel Elvira

Event studies: ttbar and MB

Basic assumption: the
simulation time is proportional
to the number of G4Steps

Performance improvement
should focus on e.m. showers in
EM-calorimeters

… EM code review… ?
ID,

E.m. physics in calorimeters is the key
element to optimize

In particular most of the time is spent
in “forward” region of the detector.
This region has also less stringent
physics requirements

ATLAS Simulation Performance

G4 Collaboration Meeting (2010/10/4) 13V. Daniel Elvira

• Review of particle cuts in the forward region to gain time performance (not
started)

• Re-write of (custom) geometry volumes in forward region (ongoing)

• Bertini (in particular memory churn) was identified as an issue. (Need to test
recent improvements by M. Kelsey.)

• Multiple Scattering (Urban Model 2) is the most time consuming process (review?)

• Two utility methods are called several times and are responsible for 2% of the
CPU time: G4Track::GetVelocity and G4PhysicsVector::GetValue. (To be tested
again with new improvements for >= G4.9.3.)

• The new G4Nystron stepper (and appropriate B-Field caching) helped a lot ATLAS
simulation to solve speed and memory issues related to tracking in magnetic field.
(Solved.)

• Memory churn drastically reduced with new
G4TouchableHistory/G4NavigationHistory. (Solved.)

ATLAS Simulation Performance

Improvements/potential improvements

G4 Collaboration Meeting (2010/10/4) 14V. Daniel Elvira

QGSP_BERT_EML adopted by mid 2009 for the same physics and with
CPU time reduced by ~20% (QGSP_BERT_EMV -> QGSP_BERT_EML).

- Use of “ApplyCut” option saved CPU and caused no significant impact on physics
- Gave up optimization options (shower lib in HF) to handle anomalous hits in the

calorimeter PMT/HPDs: ~30% increase in CPU time, also memory size .
- Peter Elmer (CMS) suggested improvements in the geometry code
by reducing the use of some of the trigonometric functions.

Problems:

• Time growth due to usage of Geant4 tracking of hadrons in the forward
detectors.

• Increase in memory usage at runtime due to usage of shower parametrization
(Gflash) in a part of the code (EM particles through HF).

CMS G4 Performance Studies

G4 Users Workshop, 2009/10/17 V. Daniel Elvira 15

(from Sunanda Banerjee)

15V. Daniel Elvira

CMS G4 Performance Studies

Application: FullSim under CMSSW380, G493p01.
G4 Version: G4.9.3.p01, CLHEP2.0.4.2.
Physics Lists: QGSP_BERT_EML
Profiler: Timing and SimpleMemoryCheck services.
Architecture: Intel Xeon E5335 @ 2 GHz dual-process dual-core setup,

slc5, 32bit, gcc4.3.4

G4 Users Workshop, 2009/10/17 V. Daniel Elvira 16

Sample Type Time (s) Memory (MB) Data (GB)

MinimumBias Default 14.6 482 0.17

Extend Fwd 21.2 609 0.17

ttbar Default 109.1 490 1.32

Extend Fwd 134.3 553 1.32

High pT QCD Default 238.6 520 2.34

Extend Fwd 240.8 531 2.25

16V. Daniel Elvira

Peter Elmer’s code "Performance Survey”: comparison of 32/64bit builds, algo
code performance improvements, reduction of dynamic memory used,
opportunities for parallelism, explore new CPU counters tools.

Use IgProf, PTU

V. Daniel Elvira 17

Summary and Outlook

G4 Users Workshop, 2009/10/17

• Significant progress testing and automating different profilers on
simple and complex G4 applications
• Slow progress on reviewing and fixing code based on what is learned.
• List of top problems not fully covered – man power issues.

What’s next?

• Finish automation of profiling tools for use in G4 as well as
documentation on usage
• Define a set of profiling/performance tests to be run frequently on
some subset of ref/candidate/public releases – staff the effort.
• Cover all elements in list of top problems to investigate and those
that arise from the systematic and frequent profiling of G4
applications
• Do we want a hypernews list or similar to post/follow progress?

