
Using the FAST profiler
to analyze Geant4

Marc Paterno
6 October 2010

Project goals
Nov. 2009 goal: to make it possible to routinely evaluate
the performance of new releases of Geant4, and make the
results publicly available.

Technique is to use the CMS simulation program as the
environment for evalution.
On demand, we want to:

build a specific release of Geant4,
build a specific release of the CMS simulation,
run a standard sample repeatedly,
produce data for analysis, and
automate production of some standard plots.

2 / 27

Tools for data collection and analysis
We use the FAST profiler for function call data

The CMS timing service (collects event-by-event execution
time)

The FNAL CMS cluster (a mixture of AMD and Intel
machines) for running jobs

Data are organized to allow import into analysis tools, or
into a RDBMS

We use R (http://www.r-project.org) for analysis

3 / 27

https://cdcvs.fnal.gov/redmine/projects/fast
http://www.r-project.org

Current status
FAST profiler is released (public beta 4 is current)

Build system automation is done

Campaign1 automation is done

Standard analysis scripts are working

Import of data into RDBMS is not yet implemented; we
analyze data directly from campaign output files

1A set of jobs run using one version of code and identical configurations
4 / 27

Trial timing distributions
Geant4 version 9.3.p01 and p02; AMD and Intel hardware

total trial time (s)

C
ou

nt

0

5

10

15

10000 12000 14000 16000

AuthenticAMD
g4.9.3.p01

GenuineIntel
g4.9.3.p01

AuthenticAMD
g4.9.3.p02

10000 12000 14000 16000

0

5

10

15

GenuineIntel
g4.9.3.p02

5 / 27

Event timing distributions (first 10 events)

event processing time (s)

ev
en

t n
um

be
r

1
2
3
4
5
6
7
8
9

10

50 100 150 200 250

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●●

AuthenticAMD
g4.9.3.p01

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

GenuineIntel
g4.9.3.p01

1
2
3
4
5
6
7
8
9

10

●

●

●

●

●

●

●

●

●

●

●

AuthenticAMD
g4.9.3.p02

50 100 150 200 250

●

●

●

●

●

●

●

●

●

●

●●● ●●● ●● ●●●●● ●

● ●●●●●●

●●●● ●● ●●●● ●● ●

● ●● ●●●● ●●● ●● ●●

●●●●●● ●●●●●●●● ●●●

●●●●●

●●●●● ●● ●●●

●● ●● ●● ●● ●●● ●

●● ●● ●● ●●●●●●

●● ●●

GenuineIntel
g4.9.3.p02

6 / 27

Event timing distributions (all events)

event processing time (s)

ev
en

t n
um

be
r

0
10
20
30
40
50
60
70
80
90

100

50 100 150 200 250 300

●● ●●● ● ● ●● ●● ● ●●● ● ●● ● ●● ●● ●●●● ● ● ●●●● ● ●● ●●● ●●● ●●● ● ● ●●●● ● ● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ●● ●

●●●●●● ●●
●●●●

●●
● ●●

●● ● ●
●

●●●●●●●
●● ● ●●●

●
●●● ●●● ●●

●●● ●●●●

● ●●●●●●●●

AuthenticAMD
g4.9.3.p01

●● ●●● ● ●●● ●● ● ●●● ● ●● ● ●● ●● ●●●● ● ● ●●●● ● ●● ●●● ●●● ● ●● ● ● ●●●● ●● ●● ●● ●● ●●●● ●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ● ●●● ●●● ●● ●●●● ● ●

●●●
● ●●●● ●● ●●●●●● ●●●● ● ●●●● ● ●●●●● ● ●●● ●●● ●●●●●● ●●● ●

● ●●●● ●●● ●●●● ●●●●●●●●●●
●●

●●● ● ●●●●●●●●● ●
●●

● ●● ●●●
GenuineIntel
g4.9.3.p01

0
10
20
30
40
50
60
70
80
90

100

●● ●●● ● ● ●●●● ● ●● ●● ●● ● ●● ●● ●●●● ● ● ●●●● ● ●● ●●● ●●● ●●● ● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ● ● ●

●

●

●

AuthenticAMD
g4.9.3.p02

50 100 150 200 250 300

●● ●●● ● ●●● ●● ● ●● ● ● ●● ● ●● ●●●●●● ● ● ●●●● ● ●● ●●● ●●● ●●● ● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ● ● ●

●●● ●●● ●● ●●●●● ●● ●●●●●● ●●●● ●● ●●●●●● ●● ●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●● ● ● ●●●● ●●●●● ●● ●●● ●●●● ●●● ●●●● ●● ●●●●●● ●●●●●●●●● ●●●● ●●●●● ●●●● ●●● ●●●●●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●● ●● ●●●●● ● ●●●●●●●●●●●●●●●●● ● ● ●●●●●●● ●●●● ● ●●●●●●●● ●●●● ● ●●●●●●●● ●●●●●●● ●●● ●● ●●●● ●● ●●●●●● ●●● ●● ● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●● ●● ●●●● ●● ●● ●●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●●●●●● ●●●●● ● ●●● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ● ●● ●● ●●● ●●●● ●● ●●●●●●●●●●● ●●●● ●●●● ●●● ●●●●●●●●● ● ●●●● ●●●● ●● ●●●●●●●●●● ● ● ●● ●●● ●● ●●●● ●●●● ●●●●● ●●●●●● ●●● ●●● ●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●● ● ●●●●●●●●●● ●●● ●●● ● ●● ●●●●●●●●● ● ●●●●●● ●●●● ●●●●● ●●●●● ●●● ●● ●● ● ● ●●● ● ●●● ●● ●●● ●● ●● ●● ● ●●●●●●●●● ●● ●●●● ●●●●●●● ● ●●●●● ●●●●●● ● ●●●●● ●●●●
GenuineIntel
g4.9.3.p02

7 / 27

Variation of event time, threaded by trial
Select only Intel-based Geant4 9.3.p02 samples (upper right
panel), and trace individual trials through the first 20 events

event processing time (scaled)

ev
en

t n
um

be
r

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Min Max

8 / 27

Variation of event time, threaded by event
Now view the same data the opposite way, concentrating on
how each event is handled by the different trials

event processing time (scaled)

tr
ia

l i
d

11_1
11_2
24_1
24_2
25_1
25_2
26_1
29_1
29_2
30_1
30_2
31_1
31_2
32_1
32_2
33_1
33_2
34_1
34_2
35_1
35_2
36_1
36_2
38_1
38_2
39_1
39_2

5_1
5_2
6_1
6_2
8_1
9_2

Min Max

Further investigation is needed to understand these data.
9 / 27

Most time-consuming functions

leaf count

G4PropagatorInField::ComputeStep
_init

G4PolyconeSide::DistanceAway
G4ClassicalRK4::DumbStepper

G4Navigator::LocateGlobalPointAndSetup
G4Mag_UsualEqRhs::EvaluateRhsGivenB

__ieee754_log

10000200003000040000

●

●

●

●

●

●

●

●● ●●●

● ●

●●●

AuthenticAMD
g4.9.3.p01

●

●

●

●

●

●

●●●

●●●● ●

●

GenuineIntel
g4.9.3.p01

G4PropagatorInField::ComputeStep
_init

G4PolyconeSide::DistanceAway
G4ClassicalRK4::DumbStepper

G4Navigator::LocateGlobalPointAndSetup
G4Mag_UsualEqRhs::EvaluateRhsGivenB

__ieee754_log

●

●

●

●

●

●

●

●

●●●●●●

●

●● ●●●

AuthenticAMD
g4.9.3.p02

10000200003000040000

●

●

●

●

●

●

●

●●●

●●●●

●● ●

●●

●● ●●● ● ●●● ●● ●●

●●●●●●

GenuineIntel
g4.9.3.p02

G4PropagatorInField::ComputeStep appears in
p02, but not p01. We have not yet investigated. It uses
∼ 1.5% of the program time.

10 / 27

Purpose
The Flexible Analysis and Storage Toolkit (FAST) is a set of
tools designed to help understand and improve the
performance—primarily the speed—of singly-threaded
computer programs written in C++, C or Fortran. It has
components for the collection, analysis, and display of
performance data.

The tools in the suite are designed to allow the user access to as
much of the measured data as possible, and to customize his
view of the data. They are designed for exploratory data
analysis, because understanding the performance of large and
complex programs is a task that requires as much creativity as
many scientific analyses.

11 / 27

Scope
FAST includes several tools and features:

a sampling-based profiler for collecting measurements,

tools for extracting call path, function call and library call
information from the raw data,

tools for the collection of information about the
environment in which the profiled program is run,

tools for graphical display of call paths, and

a documented file format in which profiling data are
written, to facilitate statistical analysis of profiling data.

Analysis tools are still under development.

FAST can profile multi-process programs, but not
multi-threaded programs.

12 / 27

Getting started
Obtain and install the prerequisites

Ruby (http://www.ruby-lang.org)
Graphviz (http://www.graphviz.org), for call graph
visualization
Optionally, ps2pdf (from
http://www.ghostscript.com), for PDF output of call
graphs
Optionally, R (http://www.r-project.org) for
analysis of data
All prerequisites are available for Linux, Mac OS X and
Windows

Download and build FAST (https:
//cdcvs.fnal.gov/redmine/projects/fast)

13 / 27

http://www.ruby-lang.org
http://www.graphviz.org
http://www.ghostscript.com
http://www.r-project.org
https://cdcvs.fnal.gov/redmine/projects/fast
https://cdcvs.fnal.gov/redmine/projects/fast

Collecting data

bash$ profrun
Usage: profrun [profrun options ...] program [program options ...]
where program is the program to be profiled and options are indicated
below.

Examples: profrun examples/ex01/Linux.x86_64/ex01
profrun -s examples/ex01/Linux.x86_64/ex01

Profrun options
-h or -help Print this help message.
-v or -version Print SimpleProfiler version.
-s or -sar Run program while collecting SAR data (Linux only).
-n or -numactl Turn on the use of numactl (Linux only).
-m or -memory[=<timeout>]

Turn on the use of smaps monitoring. The optional
argument specifies the sampling interval (default 5).

-setsid Make the invoked program its own session leader

Program options
Any options used by the program you wish to profile.

14 / 27

Output files
All filenames have the format profdata_<n>_<m>*
n and m are identifying process ids, usually the same

The most important are the names, paths and
libraries files

Most output files are human-readable tab-separated text

A full description of the output files is provided in the FAST
Users’s Manual

15 / 27

Names file contents
For each function seen, we record:

A unique function id
The address of the function
The leaf, total, and path count for the function, and the leaf
and path fractions
The library in which the function is found
The mangled and unmangled names of the function

Definition

The leaf count for a function is the number of samples in which
that function was observed at the top of the call stack.
The path count for a function is the number of samples in
which that function was observed anywhere in the call stack.
The total count for a function is the number of times that
function was observed in the call stack.

16 / 27

Libraries file contents
For each library, we record:

The full path to the library (a unique identifier)

The “short name” for the library

The sum of the leaf counts of all functions belonging to this
library

17 / 27

Paths file contents
Observed call stack addresses are translated into function
names; the call stack thus yields a sequence of function names.

Definition

Each distinct sequence of function names observed is a path.

For each observed path we record:

A unique identifier for that path

The number of times the path was observed

The ids of the functions comprising the path

18 / 27

Example of use
To show an example of use, I collected data from 114 runs of a
Geant4-based medical simulation, of a proton beam incident on
a simulation of a human head.

Geant4 version 9.3p01

OS: Scientific Linux SLF release 5.3 (Lederman)

Compiler: gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-46)

Processor: Quad-Core AMD Opteron(tm) Processor 2352

3DHeadSim program courtesy of:
Scott Penfold
Centre for Medical Radiation Physics
University of Wollongong
NSW, Australia.

19 / 27

Call path analysis

__libc_start_main
id: 1

P:28663 (0.977826)
L:0 (0.0)
libc.so.6

main
id: 2

P:28653 (0.977484)
L:0 (0.0)

3DHeadSim

19713

G4RunManager::
Initialize()

id: 9
P:240 (0.00818749)

L:0 (0.0)
libG4run.so

170

G4RunManager::
BeamOn(...)

id: 115
P:28362 (0.967557)

L:0 (0.0)
libG4run.so

19543

G4RunManager::
InitializePhysics()

id: 10
P:240 (0.00818749)

L:0 (0.0)
libG4run.so

170

G4RunManager::
RunInitialization()

id: 116
P:775 (0.0264388)

L:0 (0.0)
libG4run.so

91

G4RunManager::
DoEventLoop(...)

id: 326
P:27587 (0.941118)
L:2 (6.82291e-05)

libG4run.so

19452

_start
id: 0

P:28664 (0.97786)
L:0 (0.0)

3DHeadSim

19713

Call graphs are produced
by profgraph

Use profgraph -h for
complete help

Call paths can be trimmed
(removing infrequently
sampled paths) and
truncated (decreasing the
width of the window into
the call stack plotted)

Call paths can be centered
on any function of interest;
that function is shown in
green.

20 / 27

Another call path
G4EventManager::
DoProcessing(...)

id: 327
P:27568 (0.94047)

L:14 (0.000477604)
libG4event.so

G4TrackingManager::
ProcessOneTrack(...)

id: 328
P:27237 (0.929178)
L:29 (0.000989322)

libG4tracking.so

18845

G4SteppingManager::
Stepping()

id: 329
P:26540 (0.9054)

L:198 (0.00675468)
libG4tracking.so

18845

G4SteppingManager::
DefinePhysicalStepLength()

id: 364
P:8673 (0.295876)
L:323 (0.011019)
libG4tracking.so

7396

G4TouchableHistory::
GetVolume(...) const

id: 465
P:102 (0.00347968)
L:102 (0.00347968)

libG4geometry.so

38

G4SteppingManager::
InvokeAlongStepDoItProcs()

id: 403
P:2693 (0.0918705)
L:106 (0.00361614)

libG4tracking.so

2365

G4VSteppingVerbose::
SetSilent(...)

id: 770
P:39 (0.00133047)
L:39 (0.00133047)

libG4tracking.so

39

G4Track::
GetVelocity() const

id: 463
P:355 (0.0121107)
L:355 (0.0121107)

libG4track.so

46

G4SteppingManager::
InvokePostStepDoItProcs()

id: 330
P:14630 (0.499096)
L:59 (0.00201276)

libG4tracking.so

8767

This was created with:
profgraph -n profdata_22658_22658 329 2 1 25

21 / 27

Conclusion
The FAST profiler and associated tools are now available.
Statistically significant data samples and appropriate
analysis tools are necessary for serious comparisons.
Freely available tools aid in exploring the data.
Tools for “standard” analysis of new releases are ready.
∼ 85% of long-running jobs complete:

some failures in libunwind,
some failures in our postprocessing of data,
some failures in profiled application,
some failures due to cluster environment issues.

Almost “turnkey” operation now possible.
Web-publishing of results still must be done manually.
Validation of results is not automated; we do not want to
publish any mischaracterization of Geant4 or CMS code.

https://cdcvs.fnal.gov/redmine/projects/fast
22 / 27

https://cdcvs.fnal.gov/redmine/projects/fast

Thank you.
The remainder of this file contains backup slides.

23 / 27

Supported platforms
Currently, data collection is only supported on Linux; we
test using Scientific Linux 5

Analysis is supported anywhere the necessary tools work
(Linux, Windows, Mac OS X)

All profiler output files (including our binary data files) are
portable between platforms

24 / 27

Hardware used
Name Description Memory

AMD Quad-Core AMD Opteron(tm) Processor 2389 24 GB
Intel Intel(R) Xeon(R) CPU E5430 @ 2.66GHz 16 GB

25 / 27

The box-and-whisker plot

26 / 27

Another look: leading path counts

path count

G4PropagatorInField::ComputeStep
G4SteppingManager::InvokePSDIP

G4SteppingManager::InvokePostStepDoItProcs
G4Transportation::AlongStepGetPhysicalInteractionLength

G4SteppingManager::DefinePhysicalStepLength
G4SteppingManager::Stepping

200000 800000

●

●

●

●

●

●

●●

●●

AuthenticAMD
g4.9.3.p01

●

●

●

●

●

●

●●●
●

GenuineIntel
g4.9.3.p01

G4PropagatorInField::ComputeStep
G4SteppingManager::InvokePSDIP

G4SteppingManager::InvokePostStepDoItProcs
G4Transportation::AlongStepGetPhysicalInteractionLength

G4SteppingManager::DefinePhysicalStepLength
G4SteppingManager::Stepping

●

●

●

●

●

●

AuthenticAMD
g4.9.3.p02

200000 800000

●

●

●

●

●

●

●●
●●

GenuineIntel
g4.9.3.p02

27 / 27

