

Multiple scattering and EM builders

V.N.Ivanchenko for Standard and Low-energy EM group 15th Geant4 Collaboration Workshop 4-8 October 2010 Noordwijk, The Netherlands

Outline

- EM builders and general approach for EM Physics Lists
- Ionisation models in 9.4 EM builders
- Current status of MSC and single scattering models
- MSC in 9.4 EM builders

General approach: EM builders from physics_list sub-library

- The main advantages of using of EM builders:
 - Quality of results guaranteed by Geant4 testing
 - Testing suites can work only with well defined physics configuration which is known both for developers and users
- We need encourage users especially novice to use EM builders
- We need to migrate to EM builders in majority Geant4 examples and tests
 - N02 and N03 the most urgent
 - Further development of EM builders will be automatically used by examples
 - Example code become more compact
- Advanced users may create custom EM physics

EM Physics Builders for 9.4 (available since g4 9.3)

G4EmStandardPhysics

- default
- G4EmStandardPhysics_option I HEP fast but not precise
- G4EmStandardPhysics_option2 Experimental
- G4EmStandardPhysics_option3 medical, space
- G4EmLivermorePhysics
- G4EmLivermorePolarizedPhysics
- G4EmPenelopePhysics
- G4EmDNAPhysics

Combined Physics
Standard > I GeV
LowEnergy < I GeV

- We want to keep these 8 builders
 - Better do not extend this list
 - Difficult to reduce

Optional EM Builders for 9.4

- G4EmExtraPhysics:
 - G4SynchrotronRadiation by default disabled, may be enabled via UI command
- G4OpticalPhysics includes all optical processes

Ideal Approach to Change EM physics

- Main advice for majority of users:
 - Select EM builder
 - Define cut in range to be smaller than smallest size of the critical part of geometry
 - Use UI commands to change cut value
 - Establish step limit in volumes of interest
- Use UI command or G4EmProcessOptions helper class to change EM options
 - For example, max energy of EM tables and number of bins may be changed to reduce initilisation time and table size
- If we not yet have UI command let us discuus and establish one

How to change EM model in 9.4?

- In some cases default models should be substituted
 - In order to test a new model
 - In order to have specialized in some part of the setup
- G4EmConfigurator helper class easy way to add a model
 - Should be applied on top of selected EM builder
 - Addition of a model for particle type, energy range and detector region
- TestEm8 showing how to add PAI model for gas volume
- Microdosimetry advanced example shows how to add DNA processes for a small region only

Ionisation models in standard EM constructors

New anti-particles in 9.4

- In EM builders EM processes are added explicitly for the defined list of particles
- When anti-deuteron, anti-triton, antialpha, anti-He3 will become Geant4 'stable' particles they will be included in all EM builders

Ionisation in 9.4

- We propose to use G4ICRU73QOModel for all low-energy negatively charged hadrons and muons (A.Bagulya)
 - Used in 9.4beta
 - Minor improvement for ranges
- In Livermore Physics List low-energy ionisation model will be below I MeV (all other models below I GeV)
 - see M.Tsagri talk at I-A
- We propose to use modified by L.Urban fluctuation model for all physics lists
 - No effect on calorimeter response
 - Significantly improved signal in gaseous detectors

Status of multiple and single scattering

Elastic scattering models

- In EM standard sub-library there are G4CoulombScattering process and two models (E > 1 keV):
 - G4eCoulombScattering simplified nuclear recoil
 - G4CoulombScattering Lorentz invariant nuclear recoil
- In TestEm7 there is Vanderbilt process for low-energy ion (<100MeV/u) scattering
 - G4ScreenedNuclearRecoil

Multiple scattering – effective simulation of particle transport

- Many elastic scatterings sampled at the particle step
- Theory was developed more than 80 years! (Wentzel paper 1928)
- Step limitation increase precision
 - CPU performance penalty
 - Effect of step limitation is clearly seen in LHC experiments
- Path length correction
- Sampling of scattering angle
 - Central part and the tail
- Displacement of end point
 - Gaussian part and tail

Geant4 multiple scattering models

- All MSC models (G4, EGS, Penelope...) use the same base theory of screened Rutherford scattering
 - The difference only in implementation details
- Urban model significantly used empirical parameterisations in order to optimise precision and CPU performance
- Goudsmit-Saunderson model is based on the well established theory
 - Is focused on electrons and positrons
- WentzelVI combines single scattering for large angles and multiple scattering at small angles, also based only on theory
 - Initially was focused on muons and hadrons
 - Can be applied to other particles

Theory based MSC model of O.Kadri

Multiple scattering « process » of e-/e+ through matter is mainly described with a group of theoritical models of :

- -Angular distribution
- -Displacement sampling
- -Path length limitation

The G4GoudsmitSaunderson model use:

- -Goudsmit-Saunderson → Angular distribution (F.Salvat provided ELSEPA code)
- -I. Kawrakow and A. Bielajew → Lewis moments → Displacement sampling
- -L. Urban → Path length limitation

As a first step the following energy-dependent parameters should be correctly implemented:

- Total elastic cross section
- First transport cross section

Overview of GS model (O.Kadri)

GS PDF (probability density function)
$$\Rightarrow$$
 $F_{GS}(\theta, s) = \sum_{l=0}^{\infty} (l + 1/2) e^{-sQ_l} P_l(\cos(\theta))$

$$Q_l = 1 - y K_1(y) \left\{ 1 + 0.5 y^2 \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{l} - 0.5 \ln(l(l+1)) - 0.5772 \right\} \right\} \quad y = 2 \sqrt{l(l+1)A}$$

A:screening parameter

s/Lambda: path length in terms of mean free path

No scattering

Single scattering

$$F_{GS}(\theta, s) = \exp^{-s} \delta(1 - \cos(\theta)) + s \exp^{-s} f_1(\theta)$$

$$+(1-s-s\exp^{-s})\sum_{l=0}^{\infty}(l+1/2)\frac{\exp^{-sQ_l}-[1+s(1-Q_l)]\exp^{-s}}{1-(1+s)\exp^{-s}}P_l(\cos(\theta))$$

Multiple scattering

WentzelVI model

- Is much more simple but fully theory based
- Dynamically (depending on momentum) the angular limit for single scattering is selected
 - May be applied for transportation in vacuum or low-density media
- Has original step limitation
- Can be used together with hadronic diffuse elastic model developed by V.Grichine

Recent Fano Cavity validation results (S.Elles)

 Dependence of ionisation dose inside the cavity demonstrates precision of MeV electron transport

Effect of MSC

Calorimeter response

New test of high energy MSC CERN summer student (O.Dale)

Probability for plane scattering angle θ₂: 7.195 GeV & emstandard_opt0

Probability for plane scattering angle θ_z: 7.195 GeV & emstandard opt2

- Urban model overestimates tail,
- WentzelVI and Colomb scattering model s more close to the data
- See today parallel session

Proposal for configuration of MSC models for 9.4

Default EM constructor

- Use UrbanMscModel93 for electrons and positrons by default instead of G4UrbanMscModel92
 - Tuning to electron data for light media
- Sampling calorimeters (ATLAS, LHCb):
 - 0.5% increased visible energy
 - Relative resolution unchanged
- CMS-type calorimeter crystal calorimeter:
 - 5% increase of relative width of energy deposition in central crystal
 - Peak position of the signal unchanged

Default EM constructor

- Proposal to use G4WentzelVI + G4eCoulombScattering models for muons instead of G4UrbanModel90
 - The best results for all muon data

Standard EM constructor Option2,3

- Proposal to use G4WentzelVI + G4eCoulombScattering models for muons instead of G4UrbanModel90
 - The best results for all muon and hadron data
- Proposal to use G4WentzelVI without single scattering assuming that hadron elastic will be active instead of G4UrbanModel90
 - This option is not well tested yet
- Is there any sense to leave WentzelVI for electrons – quality is not good for today?

Combined EM constructors standard + low-energy

- Proposal to use GS model for electrons and positrons
 - Very good results for number of tests
- Proposal to use G4WentzelVI + G4eCoulombScattering models for muons instead of G4UrbanModel90
 - The best results for all muon and hadron data
- Proposal to use G4WentzelVI without single scattering assuming that hadron elastic will be active instead of G4UrbanModel90
 - This option is not well tested yet