TRANSITION REGION: RECENT RESULTS AND PROGRESS Parallel 6-A: Transition region/shower shape A. Dotti ## Response To Pions - It has been observed a non physical behaviour of the response to hadrons (first CMS then ATLAS, confirmed with simplified calorimeters) - Studied: energy carried by each secondary species in single interactions as a function of model and primary energy - Reduced response in the range 10<E_{pri}<20 GeV (QGSP_BERT) due to the use of LEP models - Different strategies possible to solve this issue: - Test different transition regions *_TRV physics lists - New models that do not require L/HEP at all: CHIPS - Extend validity of existing models (BERT and FTFP) and couple directly #### Results In One Slide - We have concentrated on the validation/tuning of FTFP_BERT and CHIPS - Very important: CHIPS released as "experimental" in 9.3 need further tuning (comparison with LHC test-beam data) - From Simplified Calorimeter results and LHC data the FTFP_BERT physics list is the most promising alternative to QGSP_BERT since gives similar results solving the transition issue - CHIPS is smooth, but its calorimetric observables (response, resolution, and shower shapes) are very different from other PLs and less compatible with data Geant 4 A. Dotti ## Physics Lists: Reminder http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/physicsLists.shtml - A Physics List is a set of consistent physics models for each particle in application - LHC tested several options: most challenging requirements on hadronic interactions come from ATLAS and CMS calorimeters - After detailed validation with test-beam: QGSP_BERT (2007) - For a given physics list when a hadronic interaction occurs a model, depending on primary type and energy, is sampled and γ-Nuclear and Lepto-Nuclear interactions ### Simplified Fe/Sci Calorimeter FTFP_BERT and CHIPS: smooth response. FTFP_BERT agrees with QGSP_BERT, where this one agrees with data Important: starting from 9.4.beta FTFP_BERT, QGSP_FTFP_BERT and QGSP_BERT_CHIPS use CHIPS models from "misc" particles and CHIPS cross-sections for kaons #### Standard Deviation - Resolution ($\sigma(\text{Evis})/<\text{Evis}>$) is not a good observable: <Evis> has steps, prefer to show $\sigma(\text{Evis})/$ Ebeam - CHIPS smaller width - QGSP_BERT: step at 10 GeV FTFP_BERT and CHIPS: smooth. 10 E_{kin} (GeV) CMS TB #### Conclusions - FTFP_BERT physics lists is at the moment the most promising: - As good as QGSP_BERT in describing LHC data - Does not show transition "effects" for response and resolution (see later for shower shapes) - QGSP_FTFP_BERT is a more conservative approach (experiments validated extensively QGS at HE) and is as good as FTFP_BERT - In the next talks we will talk about: - Recent improvements on FTF and BERT: in particular on the extension of the validity of these models - Shower shapes