

Virtual visit to CNAO Accelerator system

MARCO PULLIA

Sources and LEBT

 $0.008~{
m MeV/u~H_3^+} \ 0.008~{
m MeV/u~C^{4+}}$

 $I \sim 0.5 \text{ mA (H}_3^+)$ $I \sim 0.2 \text{ mA (C}^{4+})$

Two ECR sources

Continuous beam

LEBT Chopper

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

LINAC system

217 MHz

RFQ 0.008-0.4 MeV/u H₃⁺ 0.008-0.4 MeV/u C⁴⁺

> IH 0.4-7 MeV/u H₃⁺ 0.4-7 MeV/u C⁴⁺

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

RFQ

Internal structure

Ion entrance

217 MHz

Four-rod like type

Energy range = 8 – 400 keV/u

Electrode length = 1.35 m,

Electrode voltage = 70 kV

RF power loss (pulse): about 100 kW

Low duty cycle: around 0.1%

1's Horizon 2020 1t No 101008548

Ion exit

xit ____

LINAC

Integrated magnetic triplet lenses 56 Accelerating gaps 0.4 - 7 MeV/u Energy range Tank length 3.77 m 0.34 m Inner tank height 0.26 m Inner tank width 12 - 16 mm Drift tube aperture diam. RF power loss (pulse) ≈ 1 MW Averaged eff. volt. gain 5.3 MV/m

Figure 2: Single particle orbits in $\Delta W/W_z - \Delta \phi$ phase space at $\phi_z = 0^\circ$ with color marking of the arearopean Union's Horizon 2020 used by KONUS.

Stripping foils

Heavy Ion Therapy Research Integration

Positions: 10

Foil material: Carbon

Foil thickness: 100-200 µg/cm²

Foil diameter: 15 mm
Beam diameter: 5 mm

Position accuracy: $\pm 0.5 \, \text{mm}$

European Union's Horizon 2020

grant agreement No 101008548

MEBT

7 MeV p 7 MeV/u C⁶⁺

 $I \sim 0.75 \text{ mA (p)}$ $I \sim 0.12 \text{ mA (C}^{6+})$

Stripping foil

Debuncher

Match betas

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Multi turn injection

Synchrotron

7-250 MeV p 7-400 MeV/u C

I ~ 0.1-5 mA (p) I ~ 0.03-1.5 mA (C)

Multi turn injection

Slow extraction

Betatron core

eceived funding from the European Union's Horizon 2020 vation programme under grant agreement No 101008548

Optics

- 2 Superperiods
- 2 Closed dispersion bumps
- **1 Dipole Family**
- **3 Quadrupole Families**
- **3 Sextupole Families**

Treatment execution

Slow Extraction

Betatron core

Empty bucket channelling

Air core quadrupole

RF-KO

Pushes the beam against the resonance

 $\Delta\Phi$ = 2.46 Wb

Magnetic screen needed

₃ceived funding from the European Union's Horizon 2020 vation programme under grant agreement No 101008548

RFKO

HEBT – Treatment rooms

3 treatment rooms4 beamlinesfor treatment

HEBT - XPR

Dose delivery

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Treatment room

XPR

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Thank you for your attention

"Physics is like sex: sure, it may give some practical results, but that's not why we do it."

R. Feynmann

