
Key4hep
EP R&D Software Working Group Meeting

Plácido Fernández Declara
June 30, 2021

CERN

June 30, 2021 Key4hep - Plácido Fernández Declara 1

Table of contents

1. Key4hep

2. Common Gaudi Framework Status

3. k4MarlinWrapper

4. EDM converters for tracking and analysis

5. Use cases for k4MarlinWrapper

6. Conclusions and future directions

June 30, 2021 Key4hep - Plácido Fernández Declara 2

Key4hep

Key4hep

• It is a data processing software stack for future
detector studies.

• Provide a complete software solution using the
best software components.

• Experiments use a mix of common and very
specific packages, were some of them actually
are very similar in concept.

• Data processing framework: fast and full
simulation, reconstruction, and analysis.

• Part of the Strategic R&D Programme on
Technologies for Future Experiments

June 30, 2021 Key4hep - Plácido Fernández Declara 3

https://cds.cern.ch/record/2649646
https://cds.cern.ch/record/2649646

Key4hep components

• Key4hep has contributions from CLIC,
CEPC, FCC, ILC communities

• Event Data Model: EDM4hep
• PODIO used to create EDM4hep.

• Geometry information: DD4hep
• Packaging and development: Spack
• Simulation:

• Fast simulation: k4SimDelphes
(Delphes)

• Full simulation: k4SimGeant4 (DDG4)

• Reconstruction & Analysis:
k4MarlinWrapper

June 30, 2021 Key4hep - Plácido Fernández Declara 4

https://github.com/key4hep/EDM4hep
https://github.com/AIDASoft/podio
https://github.com/AIDASoft/DD4hep
https://github.com/key4hep/key4hep-spack

Key4hep common tooling

• Not only common software HEP tools, but also general software tools and practices.
• Templates provided for new packages to follow common structure with folders.
• Common use of build systems: CMake, gcc, clang.
• Encourage use of common software analysis tools: sanitizers.
• Encourage uniform consistent code style and practices: clang format, clang tidy.
• Common testing tools: Catch2, Pytest.
• Unified building and deployment with Spack and CVMFS.
• Moving towards common interfaces, frameworks, packages, versions, etc.
• Modern tooling: compilers, language standards,

June 30, 2021 Key4hep - Plácido Fernández Declara 5

Common Gaudi Framework Status

Common Gaudi Framework Status

• C++ application framework built at CERN.
• Well known and battle tested in HEP by LHCb and ATLAS
• Gaudi used as common framework to build several Key4hep components.
• It offers key components to develop Reconstruction, Analysis, Simulation, etc

• Algorithms, Services, Tools, Transient Event Store, Converters, etc.
• Gaudi for parallel processing

• Adaptation for efficient multi- and many-core processing.
• Gaudi::Functional.
• More modern, simple and more uniform code.

June 30, 2021 Key4hep - Plácido Fernández Declara 6

Common Gaudi Framework Status

• k4FWCOre: Data Service for PODIO collections.
• K4-project-template: template for upcoming Key4hep packages and components.
• k4SimDelphes: Delphes objects to EDM4hep
• k4SimGeant4: Geant4 based simulation (fast and full sim).
• k4Pandora: integration into Key4hep with Gaudi.
• k4MarlinWrapper: Marlin reconstruction algorithms to be used in Key4hep.
• Other packages, and new packages encourage use of Gaudi.

• Latest Gaudi is preferred.

June 30, 2021 Key4hep - Plácido Fernández Declara 7

k4MarlinWrapper

k4MarlinWrapper I

• Bring existing, battle-tested algorithms
and software from iLCSoft to future
colliders.

• Integrate in a smooth non-disruptive
way.

• Run algorithm chains that can contain
previous, current and future algorithms.

• Added support for interfaces and
converters that allow for the integration.

June 30, 2021 Key4hep - Plácido Fernández Declara 8

k4MarlinWrapper II

• Part of the Key4hep1 project:
• Brings analysis and reconstruction to the common software stack.

• Marlin Processors functionality made available in Key4hep through the Gaudi
framework.

• It contains the necessary interfaces to deal with Marlin formats to be run from Gaudi
algorithms.

• Wrapper around Marlin Processors.
• XML steering file to Python options file converter.
• In-memory converters between event data models.

• Marlin source code is kept intact, and can be called on demand.

1https://github.com/key4hep/

June 30, 2021 Key4hep - Plácido Fernández Declara 9

https://github.com/key4hep/

Dependencies

k4MarlinWrapper can be built against the Key4hep CVMFS view. Main dependencies:

• Gaudi: to wrap Marlin processors and run the algorithms.
• Marlin: to run the underlying processors.

• It will eventually disappear when only Gaudi Algorithms are used.

• LCIO: Event Data Model input/output used by Marlin.
• EDM4hep: Event Data Model input/output to be used across the framework.

• Other event data models could be integrated.

• k4FWCore, k4LCIOReader, podio: leveraging synergies between other Key4hep
packages and related.

Other general dependencies:

• ROOT, Boost

June 30, 2021 Key4hep - Plácido Fernández Declara 10

Configuration and running

• Config and running done via
Python file as with the Gaudi
Framework.

• Processor parameters defined
for each instance, and list
algorithms configured.

• On algorithm initialization of
Marlin Processors, the
MARLIN_DLL environment
variable is used to load the
necessary libraries.

MyTPCDigiProcessor = MarlinProcessorWrapper("MyTPCDigiProcessor")

MyTPCDigiProcessor.OutputLevel = INFO

MyTPCDigiProcessor.ProcessorType = "DDTPCDigiProcessor"

MyTPCDigiProcessor.Parameters = {

"DiffusionCoeffRPhi": ["0.025"],

"DiffusionCoeffZ": "0.08",

"DoubleHitResolutionRPhi": ["2"],

"DoubleHitResolutionZ": ["5"],

"HitSortingBinningRPhi": ["2"],

"HitSortingBinningZ": ["5"],

"MaxClusterSizeForMerge": ["3"],

"N_eff": ["22"],

...

}

algList.append(MyTPCDigiProcessor)

June 30, 2021 Key4hep - Plácido Fernández Declara 11

XML to Python converter

• A converter from XML steering file to Python options file is available as a Python
script.

• It produces the list of Gaudi algorithms, including optional Processors.
• These are left as commented algorithms that need to be manually uncommented by the
user.

• A comment is also included to indicate its configuration.
• # algList.append(MyFastJetProcessor) # Config.OverlayNotFalse

• It now includes Constants parsing from the XML
• It lists the CONSTANTS = to be modified by the user
• These are replaced in the processors with String substitution:
"%(DD4hepXMLFile_subPath)s" % CONSTANTS

• It now supports lists of arguments in the constants as well

• Marlin -x can create a steering file containing all the parameters for the known
processors. This can be converted to python.

June 30, 2021 Key4hep - Plácido Fernández Declara 12

Listing algorithms

Incomplete options file example:

inp = PodioInput('InputReader')

InitDD4hep.ProcessorType = "InitializeDD4hep"

VertexFinder.ProcessorType = "LcfiplusProcessor"

JetClusteringAndRefiner.ProcessorType = "LcfiplusProcessor"

MakeNtuple.ProcessorType = "LcfiplusProcessor"

MyLCIOOutputProcessor.ProcessorType = "LCIOOutputProcessor"

output = PodioOutput("PodioOutput", filename = "my_output.root")

algList.append(input)

algList.append(InitDD4hep)

algList.append(VertexFinder)

algList.append(JetClusteringAndRefiner)

algList.append(MakeNtuple)

algList.append(MyLCIOOutputProcessor)

algList.append(output)

June 30, 2021 Key4hep - Plácido Fernández Declara 13

Reading input for k4MarlinWrapper

• Reading LCIO events can be managed
by using the Event Data Service.

• A LcioEvent Algorithm wrapped by
k4MarlinWrapper with path to input file
will load the collections.

• To read EDM4hep events, k4DataSvc is
to be used.

• A PodioInput Algorithm is used to
indicate the collections to be read.

from Configurables import EventDataSvc, LcioEvent

evtsvc = EventDataSvc()

read = LcioEvent()

read.OutputLevel = DEBUG

read.Files = ["path/to/file.slcio"]

algList.append(read)

from Configurables import k4DataSvc, PodioInput

evtsvc = k4DataSvc('EventDataSvc')

evtsvc.input = 'path/to/file_EDM4hep.root'

inp = PodioInput('InputReader')

inp.collections = ['ReconstructedParticles',

'EFlowTrack']

algList.append(inp)June 30, 2021 Key4hep - Plácido Fernández Declara 14

Writing output for k4MarlinWrapper

• To write LCIO events, a standard
MarlinProcessorWrapper is used,
selecting it to be a LCIOOutputProcessor.

• The relevant parameters of the
collections are indicated to keep or
drop collections, with other
configuration options.

• To write EDM4hep events, PodioOutput
is used.

• Output commands can be set to keep or
drop collections.

from Configurables import MarlinProcessorWrapper

Output_DST = MarlinProcessorWrapper("Output_DST")

Output_DST.ProcessorType = "LCIOOutputProcessor"

Output_DST.Parameters = {"DropCollectionNames": [],

"DropCollectionTypes": ["MCParticle", "LCRelation", "SimCalorimeterHit"],

}

algList.append(Output_DST)

from Configurables import PodioOutput

out = PodioOutput("PodioOutput",

filename = "my_output.root")

out.outputCommands = ["keep *"]

algList.append(out)

June 30, 2021 Key4hep - Plácido Fernández Declara 15

k4MarlinWrapper documentation

• Documentation for k4MarlinWrapper lives in two main places:
• The Github repository
• Key4hep documentation: https://key4hep.github.io/key4hep-doc/

• Developer focused documentation is found in the repository
• It includes instructions on configuring, building and installing it.
• Running instructions are included, directly calling the produced binary.
• How read/write collections in different EDM supported formats.
• How to use the EDM conversion Gaudi Tools.

• User focused documentation is found in Key4hep documentation:
• Section ”Using the Key4hep-Stack for CLIC Simulation and Reconstruction”

• A set of simple, complex and unit test provide examples on how to run different uses
cases.

• All documentation should (and will) live in the Key4hep documentation webpage.

June 30, 2021 Key4hep - Plácido Fernández Declara 16

EDM converters for tracking and
analysis

EDM4hep <-> LCIO conversion

• In memory conversion between EDM4hep and LCIO needed to run Marlin Processors
and Edm4hep based Gaudi Algorithms at the same time.

MarlinProcessorWrapperPrev.
Algorithm

Next
Algorithm

EDM4hep
Data

ED
M

4hep
O

U
TPU

T

LC
IO

IN

PU
T

LC
IO

O
U

TPU
T

ED
M

4hep
IN

PU
T

EDM4hep2LCIO
Converter

LCIO
Data

LCIO2EDM4hep
Converter

June 30, 2021 Key4hep - Plácido Fernández Declara 17

EDM4hep to LCIO conversion

• Converter implemented in k4MarlinWrapper as a Gaudi Tool.
• Configured in the options file indicating which processor needs to use the Tool to
convert the EDM4hep event to LCIO format

• Events are read through the DataHandle from k4FWCore; these are converted and
registered in the Transient Event Store (TES) to make them available to the rest of the
framework.

MyFastJetProcessor = MarlinProcessorWrapper("MyFastJetProcessor")

...

edmConvTool = EDM4hep2LcioTool("EDM4hep2lcio")

edmConvTool.EDM2LCIOConversion = [

"Track", "EFlowTrack", "EFlowTrackConv",

"ReconstructedParticle", "ReconstructedParticles", "TightSelectedPandoraPFOs"]

...

MyFastJetProcessor.EDMConversionTool=edmConvTool

...

algList.append(MyFastJetProcessor)

June 30, 2021 Key4hep - Plácido Fernández Declara 18

Development of EDM4hep to LCIO conversion I

• During conversion some collections depend on each other.
• Makes the conversion more convoluted.
• Missing links between collections fixed after first conversion.
• i.e. A ReconstructedParticle contains a ConstVertex, which then links to a
ReconstructedParticle again.

EDM4hep DataModel Overview (v0.3)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

June 30, 2021 Key4hep - Plácido Fernández Declara 19

Development of EDM4hep to LCIO conversion II

• Some inconsistencies were found between EDM4hep and LCIO.
• i.e. EDM4hep vertex.getAlgorithmType() returns a int, whereas LCIO vertex expects a
std::string.

• Some conversions will loose information.
• Some collections have a 64 bit integer CellID in EDM4hep, that is saved as 32 bit integer
type in LCIO

• EDM4hep mass in some cases is a 64 bit double type, that is saved a a 32 bit float type in
LCIO.

• Every collection to convert presents its particularities, no generic approach.
• Metadata associated to collections is organized differently (Event vs ”group of
collections”)

June 30, 2021 Key4hep - Plácido Fernández Declara 20

LCIO to EDM4hep conversion

• Converter from LCIO format to EDM4hep needed:
• Interoperability between different algorithms.
• Write output in EDM4hep format.

• Actual conversion integrated from k4LCIOReader2, part of Key4hep.
• k4LCIOReader meant to be used to read input files.
• Adapted to read in-memory collections and convert them.

• Integrated with k4FWCore to seamlessly integrate the converted types: Podio output
used to write the collections back.

• Implemented as a Gaudi Tool: can be attached to any Gaudi algorithm from
k4MarlinWrapper.

2https://github.com/key4hep/k4LCIOReader

June 30, 2021 Key4hep - Plácido Fernández Declara 21

https://github.com/key4hep/k4LCIOReader

Use cases for k4MarlinWrapper

CLIC reconstruction

It successfully computes the full CLIC
reconstruction
• CLIC reconstruction computes a
sequence with different overlays,
digitisers, reconstruction, PFO selectors,
trackers, vertex finding algorithms, and
others.

• Complete sequence instantiated from
k4MarlinWrapper delivering same
results.

• Constants used in converted version.

• Input is converted with the updated XML
to Python converter.

• Configurable optional processors by the
users.

from Gaudi.Configuration import *

CONSTANTS = {'BCReco': "3TeV",}

parseConstants(CONSTANTS)

...

read = LcioEvent()

InitDD4hep = MarlinProcessorWrapper("InitDD4hep")

Config = MarlinProcessorWrapper("Config")

VXDBarrelDigitiser = MarlinProcessorWrapper("VXDBarrelDigitiser")

VXDEndcapDigitiser = MarlinProcessorWrapper("VXDEndcapDigitiser")

...

algList.append(InitDD4hep)

algList.append(Config)

algList.append(OverlayFalse)

algList.append(Overlay350GeV_CDR)

algList.append(VXDBarrelDigitiser)

algList.append(VXDEndcapDigitiser)

...

June 30, 2021 Key4hep - Plácido Fernández Declara 22

LCFI+ algorithm

• Group of algorithms to perform
vertex finding, jet finding and
flavour tagging for linear
colliders.

• Different Event Data Models
needed to use the group of
algorithms in different
experiments (i.e. FCC-ee)

• LCFI+ implemented in Marlin
using LCIO.

• Generated input in EDM4hep,
e.g., by Delphes

• Output expected in EDM4hep.

• Successfully implemented with
the in-memory converters.

inp = PodioInput('InputReader')

inp.collections = ['ReconstructedParticles', 'EFlowTrack']

...

edmConvTool = EDM4hep2LcioTool("EDM4hep2lcio")

edmConvTool.EDM2LCIOConversion = [...]

...

InitDD4hep.ProcessorType = "InitializeDD4hep"

InitDD4hep.EDMConversionTool=edmConvTool

...

lcioConvTool = k4LCIOReaderWrapper("LCIO2EDM4hep")

lcioConvTool.LCIO2EMD4hepConversion = [...]

..

JetClusteringAndRefiner.ProcessorType = "LcfiplusProcessor"

JetClusteringAndRefiner.LCIOConversionTool=lcioConvTool

...

out = PodioOutput("PodioOutput", filename = "my_output.root")

out.outputCommands = ["keep *"]

June 30, 2021 Key4hep - Plácido Fernández Declara 23

CLUE in Key4hep: CLUE4hep

• CLUster by Energy algorithm
• It can work in a standalone manner using common dependencies.
• Work in progress to integrate with Key4hep by Erica Brondolin.
• clicReconstruction output from k4MarlinWrapper used for CLUE.
• Fixing issues with dependencies between collections.

June 30, 2021 Key4hep - Plácido Fernández Declara 24

SCTau integration

• Integration with k4MarlinWrapper would provide all Marlin algorithms to be used in
the SCTau (Super-Charm-Tau) software framework (Aurora).

• Aurora is Gaudi based, so k4MarlinWrapper shares most of the components.
• Different versions of core packages impede an easy integration.
• k4MarlinWrapper can be included as an external.

• Geometry and sensitive detector TPC needs to be adapted from iLC to SCT.
• Event Data Model differs from EDM4hep (or LCIO)

• To be rebased from EDM4hep to be compatible.

June 30, 2021 Key4hep - Plácido Fernández Declara 25

Conclusions and future directions

Ongoing work and future directions

• k4MarlinWrapper has been improved and extended to support more use cases.
• Added converters and interfaces, extended functionality, bugs fixed.
• Converters put into test, with improvements and fixes being developed after feedback is
received.

• It has been successfully used for complete CLIC reconstruction with LCIO input.
• EDM4hep input still presents some issues with metadata not being converted. Ongoing fix.

• Integration with SCTau is ongoing: EDM and framework integration. ongoing.3

• EDM converters: EDM4hep and LCIO types supported.
• Changes to deal with reference collections to be consistent between LCIO->EDM4hep and
EDM4hep->LCIO conversions.

• Simplification of converters: remove need to indicate type.

3This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 871072

June 30, 2021 Key4hep - Plácido Fernández Declara 26

Conclusions

• Key4hep effort to provide complete software stack for future detectors keeps
progressing, including contributions from major future colliders: CLIC, FCC, CEPC and
ILC.

• Different experiments and use cases are now being tested using Key4hep or
components of Key4hep.

• k4MarlinWrapper base functionality is set, but details, hidden assumptions and
different conventions are highlighted when it is put into real test.

• These are to be discovered, fixed and released.

• The whole Key4hep project presents lots of synergies and opportunities for common
software good practices, removal of duplicities, simplification of processes... all while
being generic enough for different future experiments.

June 30, 2021 Key4hep - Plácido Fernández Declara 27

	Key4hep
	Common Gaudi Framework Status
	k4MarlinWrapper
	EDM converters for tracking and analysis
	Use cases for k4MarlinWrapper
	Conclusions and future directions

