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Key4hep



Key4hep

• It is a data processing software stack for future
detector studies.

• Provide a complete software solution using the
best software components.

• Experiments use a mix of common and very
specific packages, were some of them actually
are very similar in concept.

• Data processing framework: fast and full
simulation, reconstruction, and analysis.

• Part of the Strategic R&D Programme on
Technologies for Future Experiments
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Key4hep components

• Key4hep has contributions from CLIC,
CEPC, FCC, ILC communities

• Event Data Model: EDM4hep
• PODIO used to create EDM4hep.

• Geometry information: DD4hep
• Packaging and development: Spack
• Simulation:

• Fast simulation: k4SimDelphes
(Delphes)

• Full simulation: k4SimGeant4 (DDG4)

• Reconstruction & Analysis:
k4MarlinWrapper

June 30, 2021 Key4hep - Plácido Fernández Declara 4

https://github.com/key4hep/EDM4hep
https://github.com/AIDASoft/podio
https://github.com/AIDASoft/DD4hep
https://github.com/key4hep/key4hep-spack


Key4hep common tooling

• Not only common software HEP tools, but also general software tools and practices.
• Templates provided for new packages to follow common structure with folders.
• Common use of build systems: CMake, gcc, clang.
• Encourage use of common software analysis tools: sanitizers.
• Encourage uniform consistent code style and practices: clang format, clang tidy.
• Common testing tools: Catch2, Pytest.
• Unified building and deployment with Spack and CVMFS.
• Moving towards common interfaces, frameworks, packages, versions, etc.
• Modern tooling: compilers, language standards,
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Common Gaudi Framework Status



Common Gaudi Framework Status

• C++ application framework built at CERN.
• Well known and battle tested in HEP by LHCb and ATLAS
• Gaudi used as common framework to build several Key4hep components.
• It offers key components to develop Reconstruction, Analysis, Simulation, etc

• Algorithms, Services, Tools, Transient Event Store, Converters, etc.
• Gaudi for parallel processing

• Adaptation for efficient multi- and many-core processing.
• Gaudi::Functional.
• More modern, simple and more uniform code.
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Common Gaudi Framework Status

• k4FWCOre: Data Service for PODIO collections.
• K4-project-template: template for upcoming Key4hep packages and components.
• k4SimDelphes: Delphes objects to EDM4hep
• k4SimGeant4: Geant4 based simulation (fast and full sim).
• k4Pandora: integration into Key4hep with Gaudi.
• k4MarlinWrapper: Marlin reconstruction algorithms to be used in Key4hep.
• Other packages, and new packages encourage use of Gaudi.

• Latest Gaudi is preferred.
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k4MarlinWrapper



k4MarlinWrapper I

• Bring existing, battle-tested algorithms
and software from iLCSoft to future
colliders.

• Integrate in a smooth non-disruptive
way.

• Run algorithm chains that can contain
previous, current and future algorithms.

• Added support for interfaces and
converters that allow for the integration.
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k4MarlinWrapper II

• Part of the Key4hep1 project:
• Brings analysis and reconstruction to the common software stack.

• Marlin Processors functionality made available in Key4hep through the Gaudi
framework.

• It contains the necessary interfaces to deal with Marlin formats to be run from Gaudi
algorithms.

• Wrapper around Marlin Processors.
• XML steering file to Python options file converter.
• In-memory converters between event data models.

• Marlin source code is kept intact, and can be called on demand.

1https://github.com/key4hep/

June 30, 2021 Key4hep - Plácido Fernández Declara 9

https://github.com/key4hep/


Dependencies

k4MarlinWrapper can be built against the Key4hep CVMFS view. Main dependencies:

• Gaudi: to wrap Marlin processors and run the algorithms.
• Marlin: to run the underlying processors.

• It will eventually disappear when only Gaudi Algorithms are used.

• LCIO: Event Data Model input/output used by Marlin.
• EDM4hep: Event Data Model input/output to be used across the framework.

• Other event data models could be integrated.

• k4FWCore, k4LCIOReader, podio: leveraging synergies between other Key4hep
packages and related.

Other general dependencies:

• ROOT, Boost
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Configuration and running

• Config and running done via
Python file as with the Gaudi
Framework.

• Processor parameters defined
for each instance, and list
algorithms configured.

• On algorithm initialization of
Marlin Processors, the
MARLIN_DLL environment
variable is used to load the
necessary libraries.

MyTPCDigiProcessor = MarlinProcessorWrapper("MyTPCDigiProcessor")

MyTPCDigiProcessor.OutputLevel = INFO

MyTPCDigiProcessor.ProcessorType = "DDTPCDigiProcessor"

MyTPCDigiProcessor.Parameters = {

"DiffusionCoeffRPhi": ["0.025"],

"DiffusionCoeffZ": "0.08",

"DoubleHitResolutionRPhi": ["2"],

"DoubleHitResolutionZ": ["5"],

"HitSortingBinningRPhi": ["2"],

"HitSortingBinningZ": ["5"],

"MaxClusterSizeForMerge": ["3"],

"N_eff": ["22"],

# ...

}

algList.append(MyTPCDigiProcessor)
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XML to Python converter

• A converter from XML steering file to Python options file is available as a Python
script.

• It produces the list of Gaudi algorithms, including optional Processors.
• These are left as commented algorithms that need to be manually uncommented by the
user.

• A comment is also included to indicate its configuration.
• # algList.append(MyFastJetProcessor) # Config.OverlayNotFalse

• It now includes Constants parsing from the XML
• It lists the CONSTANTS = to be modified by the user
• These are replaced in the processors with String substitution:
"%(DD4hepXMLFile_subPath)s" % CONSTANTS

• It now supports lists of arguments in the constants as well

• Marlin -x can create a steering file containing all the parameters for the known
processors. This can be converted to python.
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Listing algorithms

Incomplete options file example:

inp = PodioInput('InputReader')

InitDD4hep.ProcessorType = "InitializeDD4hep"

VertexFinder.ProcessorType = "LcfiplusProcessor"

JetClusteringAndRefiner.ProcessorType = "LcfiplusProcessor"

MakeNtuple.ProcessorType = "LcfiplusProcessor"

MyLCIOOutputProcessor.ProcessorType = "LCIOOutputProcessor"

output = PodioOutput("PodioOutput", filename = "my_output.root")

algList.append(input)

algList.append(InitDD4hep)

algList.append(VertexFinder)

algList.append(JetClusteringAndRefiner)

algList.append(MakeNtuple)

algList.append(MyLCIOOutputProcessor)

algList.append(output)
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Reading input for k4MarlinWrapper

• Reading LCIO events can be managed
by using the Event Data Service.

• A LcioEvent Algorithm wrapped by
k4MarlinWrapper with path to input file
will load the collections.

• To read EDM4hep events, k4DataSvc is
to be used.

• A PodioInput Algorithm is used to
indicate the collections to be read.

from Configurables import EventDataSvc, LcioEvent

evtsvc = EventDataSvc()

read = LcioEvent()

read.OutputLevel = DEBUG

read.Files = ["path/to/file.slcio"]

algList.append(read)

from Configurables import k4DataSvc, PodioInput

evtsvc = k4DataSvc('EventDataSvc')

evtsvc.input = 'path/to/file_EDM4hep.root'

inp = PodioInput('InputReader')

inp.collections = ['ReconstructedParticles',

'EFlowTrack']

algList.append(inp)June 30, 2021 Key4hep - Plácido Fernández Declara 14



Writing output for k4MarlinWrapper

• To write LCIO events, a standard
MarlinProcessorWrapper is used,
selecting it to be a LCIOOutputProcessor.

• The relevant parameters of the
collections are indicated to keep or
drop collections, with other
configuration options.

• To write EDM4hep events, PodioOutput
is used.

• Output commands can be set to keep or
drop collections.

from Configurables import MarlinProcessorWrapper

Output_DST = MarlinProcessorWrapper("Output_DST")

Output_DST.ProcessorType = "LCIOOutputProcessor"

Output_DST.Parameters = {"DropCollectionNames": [],

"DropCollectionTypes": ["MCParticle", "LCRelation", "SimCalorimeterHit"],

}

algList.append(Output_DST)

from Configurables import PodioOutput

out = PodioOutput("PodioOutput",

filename = "my_output.root")

out.outputCommands = ["keep *"]

algList.append(out)
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k4MarlinWrapper documentation

• Documentation for k4MarlinWrapper lives in two main places:
• The Github repository
• Key4hep documentation: https://key4hep.github.io/key4hep-doc/

• Developer focused documentation is found in the repository
• It includes instructions on configuring, building and installing it.
• Running instructions are included, directly calling the produced binary.
• How read/write collections in different EDM supported formats.
• How to use the EDM conversion Gaudi Tools.

• User focused documentation is found in Key4hep documentation:
• Section ”Using the Key4hep-Stack for CLIC Simulation and Reconstruction”

• A set of simple, complex and unit test provide examples on how to run different uses
cases.

• All documentation should (and will) live in the Key4hep documentation webpage.
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EDM converters for tracking and
analysis



EDM4hep <-> LCIO conversion

• In memory conversion between EDM4hep and LCIO needed to run Marlin Processors
and Edm4hep based Gaudi Algorithms at the same time.
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EDM4hep to LCIO conversion

• Converter implemented in k4MarlinWrapper as a Gaudi Tool.
• Configured in the options file indicating which processor needs to use the Tool to
convert the EDM4hep event to LCIO format

• Events are read through the DataHandle from k4FWCore; these are converted and
registered in the Transient Event Store (TES) to make them available to the rest of the
framework.

MyFastJetProcessor = MarlinProcessorWrapper("MyFastJetProcessor")

# ...

edmConvTool = EDM4hep2LcioTool("EDM4hep2lcio")

edmConvTool.EDM2LCIOConversion = [

"Track", "EFlowTrack", "EFlowTrackConv",

"ReconstructedParticle", "ReconstructedParticles", "TightSelectedPandoraPFOs"]

# ...

MyFastJetProcessor.EDMConversionTool=edmConvTool

# ...

algList.append(MyFastJetProcessor)
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Development of EDM4hep to LCIO conversion I

• During conversion some collections depend on each other.
• Makes the conversion more convoluted.
• Missing links between collections fixed after first conversion.
• i.e. A ReconstructedParticle contains a ConstVertex, which then links to a
ReconstructedParticle again.

EDM4hep DataModel Overview (v0.3)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation
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Development of EDM4hep to LCIO conversion II

• Some inconsistencies were found between EDM4hep and LCIO.
• i.e. EDM4hep vertex.getAlgorithmType() returns a int, whereas LCIO vertex expects a
std::string.

• Some conversions will loose information.
• Some collections have a 64 bit integer CellID in EDM4hep, that is saved as 32 bit integer
type in LCIO

• EDM4hep mass in some cases is a 64 bit double type, that is saved a a 32 bit float type in
LCIO.

• Every collection to convert presents its particularities, no generic approach.
• Metadata associated to collections is organized differently (Event vs ”group of
collections”)
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LCIO to EDM4hep conversion

• Converter from LCIO format to EDM4hep needed:
• Interoperability between different algorithms.
• Write output in EDM4hep format.

• Actual conversion integrated from k4LCIOReader2, part of Key4hep.
• k4LCIOReader meant to be used to read input files.
• Adapted to read in-memory collections and convert them.

• Integrated with k4FWCore to seamlessly integrate the converted types: Podio output
used to write the collections back.

• Implemented as a Gaudi Tool: can be attached to any Gaudi algorithm from
k4MarlinWrapper.

2https://github.com/key4hep/k4LCIOReader
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Use cases for k4MarlinWrapper



CLIC reconstruction

It successfully computes the full CLIC
reconstruction
• CLIC reconstruction computes a
sequence with different overlays,
digitisers, reconstruction, PFO selectors,
trackers, vertex finding algorithms, and
others.

• Complete sequence instantiated from
k4MarlinWrapper delivering same
results.

• Constants used in converted version.

• Input is converted with the updated XML
to Python converter.

• Configurable optional processors by the
users.

from Gaudi.Configuration import *

CONSTANTS = {'BCReco': "3TeV",}

parseConstants(CONSTANTS)

# ...

read = LcioEvent()

InitDD4hep = MarlinProcessorWrapper("InitDD4hep")

Config = MarlinProcessorWrapper("Config")

VXDBarrelDigitiser = MarlinProcessorWrapper("VXDBarrelDigitiser")

VXDEndcapDigitiser = MarlinProcessorWrapper("VXDEndcapDigitiser")

# ...

algList.append(InitDD4hep)

algList.append(Config)

# algList.append(OverlayFalse)

# algList.append(Overlay350GeV_CDR)

algList.append(VXDBarrelDigitiser)

algList.append(VXDEndcapDigitiser)

# ...
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LCFI+ algorithm

• Group of algorithms to perform
vertex finding, jet finding and
flavour tagging for linear
colliders.

• Different Event Data Models
needed to use the group of
algorithms in different
experiments (i.e. FCC-ee)

• LCFI+ implemented in Marlin
using LCIO.

• Generated input in EDM4hep,
e.g., by Delphes

• Output expected in EDM4hep.

• Successfully implemented with
the in-memory converters.

inp = PodioInput('InputReader')

inp.collections = ['ReconstructedParticles', 'EFlowTrack']

# ...

edmConvTool = EDM4hep2LcioTool("EDM4hep2lcio")

edmConvTool.EDM2LCIOConversion = [...]

# ...

InitDD4hep.ProcessorType = "InitializeDD4hep"

InitDD4hep.EDMConversionTool=edmConvTool

# ...

lcioConvTool = k4LCIOReaderWrapper("LCIO2EDM4hep")

lcioConvTool.LCIO2EMD4hepConversion = [...]

# ..

JetClusteringAndRefiner.ProcessorType = "LcfiplusProcessor"

JetClusteringAndRefiner.LCIOConversionTool=lcioConvTool

# ...

out = PodioOutput("PodioOutput", filename = "my_output.root")

out.outputCommands = ["keep *"]
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CLUE in Key4hep: CLUE4hep

• CLUster by Energy algorithm
• It can work in a standalone manner using common dependencies.
• Work in progress to integrate with Key4hep by Erica Brondolin.
• clicReconstruction output from k4MarlinWrapper used for CLUE.
• Fixing issues with dependencies between collections.
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SCTau integration

• Integration with k4MarlinWrapper would provide all Marlin algorithms to be used in
the SCTau (Super-Charm-Tau) software framework (Aurora).

• Aurora is Gaudi based, so k4MarlinWrapper shares most of the components.
• Different versions of core packages impede an easy integration.
• k4MarlinWrapper can be included as an external.

• Geometry and sensitive detector TPC needs to be adapted from iLC to SCT.
• Event Data Model differs from EDM4hep (or LCIO)

• To be rebased from EDM4hep to be compatible.
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Ongoing work and future directions

• k4MarlinWrapper has been improved and extended to support more use cases.
• Added converters and interfaces, extended functionality, bugs fixed.
• Converters put into test, with improvements and fixes being developed after feedback is
received.

• It has been successfully used for complete CLIC reconstruction with LCIO input.
• EDM4hep input still presents some issues with metadata not being converted. Ongoing fix.

• Integration with SCTau is ongoing: EDM and framework integration. ongoing.3

• EDM converters: EDM4hep and LCIO types supported.
• Changes to deal with reference collections to be consistent between LCIO->EDM4hep and
EDM4hep->LCIO conversions.

• Simplification of converters: remove need to indicate type.

3This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 871072
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Conclusions

• Key4hep effort to provide complete software stack for future detectors keeps
progressing, including contributions from major future colliders: CLIC, FCC, CEPC and
ILC.

• Different experiments and use cases are now being tested using Key4hep or
components of Key4hep.

• k4MarlinWrapper base functionality is set, but details, hidden assumptions and
different conventions are highlighted when it is put into real test.

• These are to be discovered, fixed and released.

• The whole Key4hep project presents lots of synergies and opportunities for common
software good practices, removal of duplicities, simplification of processes... all while
being generic enough for different future experiments.
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