

SEE

IFAST Prototyping Activity REX Resonant EXtraction Improvement Work Package 5 Task 3 Kick-off meeting / 4th of May 2021 Peter Forck and Rahul Singh, GSI Consortium:

bergoz Istrumentation

Challenges for slow Extraction form Synchrotrons

Slow extraction: Gentle excitation of a beam third order resonance

Beam physics: Extraction as 'slow losses' for 1 ... 10 s

- Particle crosses stability boarder sequentially
- Exponential amplitude growth during 'transit time'
 - $\approx 50 \dots 1000$ turns reaching septum and is extracted

Problem: Sensitivity to any unintended resonance condition, e.g.:

- Change of tune: unintended quadrupole current ripple
- Change of excitation strength: sextupole current ripple
- Stochastic amplitude excitation of 'knock-out' extraction
 Mitigation research within IFAST-REX:

Beam physics: Methods for beam sensitivity reduction Proposal of non-standard excitation methods

 \Rightarrow Extensive simulation of extraction process

Technical installations: Improved power supplier for magnets Improved transverse particle excitation for knock-out extraction

 \Rightarrow Non-standard power converter and rf-amplifier control **Validation:** Experimental validation at all facilities

Tailored improvements for IFAST-REX participants

P. Forck, R Singh GSI – IFAST-REX Slow extraction --I.FAST Kick-off Meeting 2nd May 2021

Example for 'Spill Micro-Structure' for a coasting Beam

Requirements at different Synchrotrons focusing on 'Spill Micro-Structure'

Slow extraction is used for fixed target users:

CERN & GSI: Uniformity of spill required for high count rate matched to detectors

CERN PS & SPS: Tune scan including optics correction via COSE (Constant Optics Slow Extraction)

GSI SIS18 & planned for SIS100: Tune scan & stochastic horizontal amplitude excitation, so-called 'rf-knockout'

Hadron therapy facilities: Safety requirements of intensity monitoring

- > HIT & MIT: rf-knockout with bunched beams, air-core quadrupole for 50 Hz compensation, slow spill control
- **CNAO & MedAustron:** Longi. acceleration by 'betatron-core', bucket channeling & rf-knockout, air-core quadrupole

Workshops 2016 to 2019

EuCARD² & ARIES frame.

Follow-up planed in Japan

SLOW

2017

orkshor

WORKS

about 50 participants each,

\Rightarrow Improvement of spill micro-structure for all facilities required and envisaged

Methodology:

- **Beam dynamics simulation:** Detailed modeling of extraction process for all facilities
- **Technical improvements:** Magnet power supplier and rf exciter control \succ
- Validation: Experimental validation at all facilities

Further topics for slow extraction from user perspective:

- Transverse beam stability at target
- Handling of different horizontal and vertical emittance
- High transmission for loss reduction at septum (within synchr.)
- Varying beam parameter during extraction, 'macro-spill control'

IFAST-REX Participants and Goals

Industrial beneficiaries:

INSTRUMENTATION

Barthel:

barthel

HF-Technik

Special rf-amplifier and control \rightarrow matched rf-generation & amplification Bergoz: Sensitive & high dynamic range transformer \rightarrow power supplier control providing $\Delta I / I < 10^{-6}$

All facilities:

- Contribution to development
- Experimental verification
- \Rightarrow Beneficiaries of improvement
- \Rightarrow Proposals for facilities (USA, Japan, China)

Facility beneficiaries: **CERN:**

- Detailed simulations
- Feedforward and feedback systems
- Accelerator physics description **GSI:**
- Detailed simulations
- Accelerator physics description
- Versatile fast detector system HIT:
- rf-control development
- Power supplier development

Associated partners: **CNAO:**

- Methodology for extraction
- Test of different extraction types MedAustron:
- Test of different extraction types
- Power supplier development MIT:
- 'air-coil' quadrupole SEEIIST:
- Presently observer

P. Forck, R Singh GSI – IFAST-REX Slow extraction -- I.FAST Kick-off Meeting 2nd May 2021

IFAST-REX Kick-off Meeting 8th and 9th Feb. 2021

Remote kick-off meeting at 8th & 9th February, 1.5 days:

INDICO: https://indico.gsi.de/event/11868/

40 participants from all consortium members,

Participants per institution: Barthel:1, Bergoz: 2, CERN: 6, CNAO: 4, GSI: 12, HIT: 5, MedAustron: 6, MIT: 2, SEEIIST: 2

Discussed topic:

- Introduction of involved people and institutions
- Overview on each facility requirements \rightarrow understanding of different realizations
- Achievements and ideas for spill quality \rightarrow condensed information on present status
- Used beam dynamics simulation tools \rightarrow overview on methodology for improvements
- \blacktriangleright Status of technical developments & plans \rightarrow first plans for innovative technical realizations
- Technical status form companies

 \rightarrow roadmap for technical realization

Working Groups and first Steps

Working groups formation:

- 1. Specifications for development and integration of high dynamic range current measurement device
- 2. Specification and contribution for knock-out signal generation, exciter and amplifier design
- 3. Slow extraction simulations
- 4. Fast particle detector development and measurement analysis

Most working groups have members from all facilities; industry partners in 1 and 2, respectively.

Frist Steps:

- > Compilation of important slow extraction parameters by Florian Kühteubl, MedAustron
 - \Rightarrow Comparison of parameters at facilities
 - \Rightarrow Possible 'scaling' of parameter for comprehensive comparison of different beam parameter (e.g. beam energy)
- Roadmap for theoretical investigations, e.g. simplified model synchrotron
- First ideas for performant detector development
- Design specifications for technical developments
- \Rightarrow Start-up of working groups to form a lively consortium

Milestone and deliverable:

- Sign of improved power supply current meas. and rf-amplifier layout, April 2023 MS20 report (M24): Engineering design of improved power supply current meas.
- > D5.3 demonstrator & report (M46): Ripple mitigation for slow extraction beam quality improvement, February 2025

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

IFAST-REX Participants and Tasks

Consortium:

Financial support by EU of Beneficiaries and Associated Partners:

Beneficiaries:				GSI	CERN	HIT	BT	BI	Totals
-	Α	Personnel and travel costs	k€	310	100	100	200	200	910
	В	Material and other costs	k€	70	20	20	40	40	190
	С	Requested EC contribution	k€	190	60	60	95	95	500
		Incl. budget for Ass. Partners							
		Funding rate		40%	40%	40%	31.6%	31.6%	36.4%
		F=C/(1.25*(A+B))							
Associated Partners:				CNAO	MIT	Med	A SEEII	'ST	
	Α	Personnel and travel costs	k€	30	30	3	0	20	Associat
	В	Material and other costs	k€	10	10	1	.0	0	Partners
	С	Requested EC contribution	k€	20	20	2	20	10	Request
		including overhead costs							Overhea
		Funding rate		40%	40%	40	% 4	0%	included
		F=C/(1.25*(A+B))							Ass. Part
		Available budget from	k€	15	15	1	.5	7.5	GSI dired
		requested EC contribution							
		without overhead costs							

iated

ers' budget: st: 70 k€ ead: -17.5 k€ ed in GSI budget: 70 k€ art: rect: +120 k€

Administrative documents: Grand agreement, consortium agreement

& contract GSI ↔ Associated Partners will be produced & signed

IFAST-REX Working Group members

 1) Development and integration of high dynamic	 2) Specification and contribution for KO signal generation,
range current measurement device: CERN: Diogo Alves, Marek Gasior CNAO: GSI: Rahul Singh, Andrzej Stafiniak HIT: Eike Feldmeier MedAustron: Claus Schmitzer MIT: ? SEEIIST: Mariusz Sapinski Bergoz: Frank Stulle	exciter and amplifier design: CERN: Paolo Sota CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, Al.Mereghetti GSI: Rahul Singh HIT: Eike Feldmeier MedAustron: Claus Schmitzer, Florian Kühteubl, Dale Prokopovich MIT: ? SEEIIST: Elena Benedetto Barthel: Matthias Barthel
 3) Slow extraction simulations: CERN: Verena Kain, Matthew Fraser, Francesca Velotti CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, Al Mereghetti GSI: Peter Forck, Stefan Sorge HIT: MedAustron: Florian Kühteubl, Alexander Wastl, Dale Prokopovich MIT: ? SEEIIST: Rebecca Tayor 	 4) Spill detector development and analysis: CERN: Federico Roncarolo (maybe Matthew Fraser) CNAO: Marco Pullia, Luciano Falbo, Paolo Meliga, A. Mereghetti GSI: Peter Forck, Plamen Boutachkov HIT: Andreas Peters MedAustron: Dale Prokopovich MIT: ? SEEIIST: Mariusz Sapinski

P. Forck, R Singh GSI – IFAST-REX Slow extraction --I.FAST Kick-off Meeting 2nd May 2021

SEE ST

MIT