

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Task 7.4:

Very high gradient RF Guns operating in the C-band RF technology

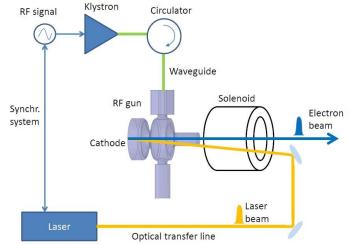
4-5-2021 IFAST Kick-off Meeting

David Alesini, WT 7.4 coord. INFN-LNF (Frascati, Italy)

GOALS OF TASK 7.4

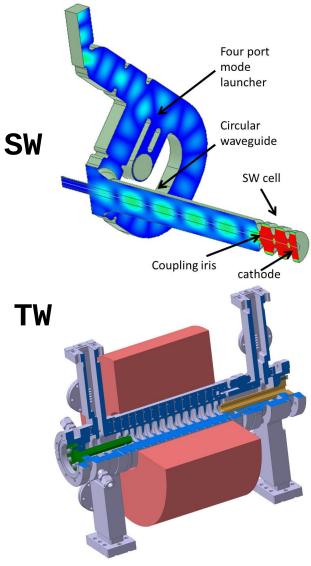
- Research Institutions involved: INFN (IT), PSI (SW);
- Private Companies involved: VLD (NE), COMEB (IT)
- Design, realization and high power test of two different Cband (5.712 GHz) RF electron guns operating at very high gradient cathode peak field (>160 MV/m): a Standing Wave (SW) gun and a Travelling Wave (TW) gun.
- **Comparison** of the performances.
- **Beam dynamics** simulations to exploit the device potentialities

D7.4 (M38): Mechanical realization and low power RF test of the two RF guns



RF PHOTO-GUNS

- Photo-injectors are widely used in modern facilities, especially in FEL radiation source, as very low-emittance and highbrightness electron sources.
- A laser pulse extracts the electrons from a cathode and an external **RF power source** excites the cavity accelerating mode so that the photo-electrons are immediately accelerated
- Presently, the RF technology mostly used for RF Guns is the L or S-band (f=1.3 or 3 GHz).
- According to beam dynamics studies, the higher the peak electric field on the cathode, the better the quality of the beam emerging from the Gun. In this respect the S-band represents the state-of-the-art, providing typical peak fields of ≈120 MV/m on the cathode.



VERY HIGH GRADIENT C BAND GUNS: MOTIVATION

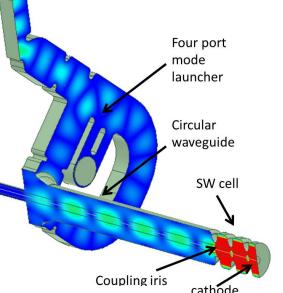
- The **C-band RF (f=5712 MHz) is a more recent technology** whose reliability have been already fully demonstrated (SwissFEL, SACLA).
- The frequency step-up from S-band to C-band can provide an improvement of the beam quality because of higher achievable cathode peak field as high as 160-180 MV/m.
- Because of its higher efficiency a C-band RF Gun is also suitable for application requiring repetition rates in the 100 Hz+1 kHz range.
- The availability of a new state-of-the-art, compact and cost effective electron injector would bring benefits to a large accelerator user community, primarily to the facilities at the frontiers of the beam quality such as FEL radiation sources, Thomson/Compton photon sources and plasma based accelerators

MAIN RESPONSABILITIES

- <u>INFN</u>: coordination, **design** and low power test **SW Gun**, **solenoid** design and procurement, **design of the module** to test the gun, providing the **RF circulator**.
- <u>PSI</u>: design, assembly, brazing and low-power characterization of the TW Gun, hosting and setting up the high-power test.
- <u>COMEB</u>: mechanical construction SW gun, mechanical supports and movable screen with magnetic corrector.
- **<u>VDL</u>**: Machining of the cups and couplers of the TW gun.

FAST

• **INFN and PSI**: A comprehensive study and optimization of the **beam dynamics** aspects, to fully exploit the devices potentialities, will be led by


SW GUN (INFN)

- \Rightarrow Powered with **short pulses** (300 ns) of few tens of MW to reduce the pulsed heating $(\sim \sqrt{\tau})$ and BDR $(\sim \tau^5)$;
- \Rightarrow e.m. design completed
- \Rightarrow Mechanical design in progress
- \Rightarrow Design compatible with **1 kHz rep. rate**;
- \Rightarrow Cathode peak field (E_{cath})> 160 MV/m
- \Rightarrow 4-port mode launcher (no pulse heating)

solenoid

Rfgun

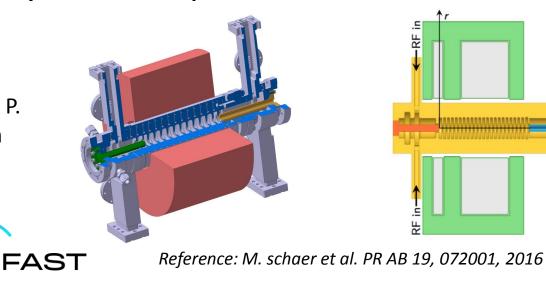
 \Rightarrow (Commercial) **circulator is necessary**;

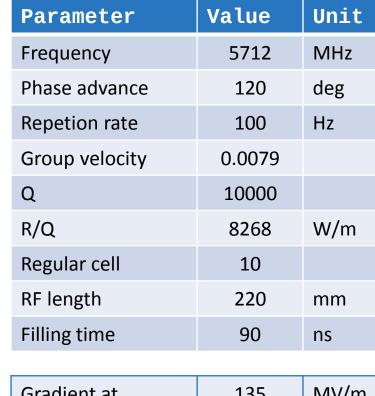
5/			
			Coupling coeff.
	Coupling iris	cathode	RF pulse length [
		calliode	E _{surf} /E _{cath}
Mode launcher	→ T		Mod. Poy. Vect.
	Í		Pulsed heating [
			Av.diss. Power [\
Rfgun			
	T		

Parameter	value	
Frequency [GHz]	5.712	
E _{cath} /√P _{diss} [MV/(m⋅MW ^{0.5})]	52	
Input power [MW]	18	23
Cathode field [MV/m]	160	180
Cathode type	copper	
Rep. rate [Hz]	1000	100
Quality factor	11800	
Filling time [ns]	164	
Coupling coeff.	3	
RF pulse length [ns]	300	
E _{surf} /E _{cath}	0.9	
Mod. Poy. Vect. [W/µm ²]	2.5	3.1
Pulsed heating [°C]	<20	
Av.diss. Power [W]	2300	300

David Alesini– Task 7.4: Very high gradient RF Guns – I.FAST Kick-off Meeting May 2021

TW GUN (PSI)


- **Motivation:** exploring new designs of electron source at C-band frequency that could represent a future upgrade of the SwissFEL injector.
- **Approach:** higher electric field at cathode with shorter RF pulses
- **Performances:**


Brightness up to a factor 3-4 higher than the SwissFEL with gradient at cathode up to 200 MV/m

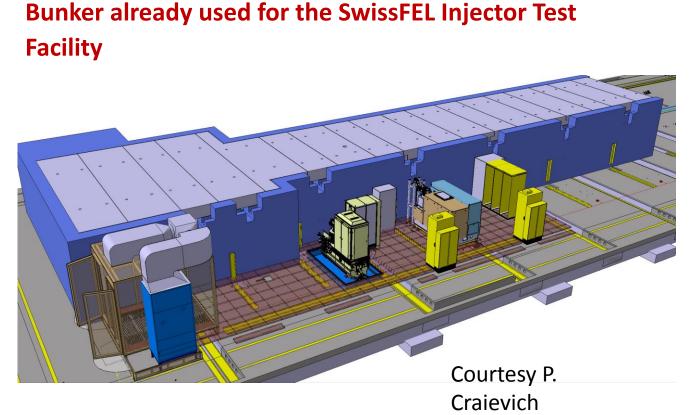
Impact on SwissFEL:

Overall magnetic bunch compression relaxed along the linac \rightarrow better stability and faster setup of the linac

Courtesy P. Craievich

Gradient at cathode	135	MV/m
Gun output energy	12.7	MeV

Gradient at cathode	200	MV/m
Gun output energy	13.9	MeV


David Alesini– Task 7.4: Very high gradient RF Guns – I.FAST Kick-off Meeting May 2021

RF out

RF out

S

RF test facility @PSI for SwissFEL upgrade

Status:

- HV klystron modulator is running on C-band
 PSI loads (max power 50 MW)
- Bunker: document preparation to get permission, some modifications are needed

David Alesini– Task 7.4: Very high gradient RF Guns – I.FAST Kick-off Meeting May 2021

CONCLUSION Task 7.4

IFAST

 \Rightarrow Design, realization and high power test of two different C-band (@5.712 GHz) RF electron guns \Rightarrow SW GUN (INFN+COMEB) TW GUN (PSI+VDL)

 \Rightarrow High power test @PSI

 \Rightarrow Beam dynamics simulations to exploit the device potentialities

⇒ The availability of a new state-of-the-art C band electron injector would bring benefits to a large accelerator user community: FEL radiation sources, Thomson/Compton photon sources and plasma based accelerators

⇒ Compact dimensions, high flux and cost effectiveness expand the potentiality of the device towards industrial applications and small-scale research facilities.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

THANK YOU FOR YOUR lities ATTENTION