

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

IFAST WP7_Task 7.5: CompactLight Prototype Accelerating Structure

IFAST kick-off meeting, May 04th, 2021

Gerardo D'Auria, Elettra - Sincrotrone Trieste

Task 7.5: CompactLight Prototype Accelerating Structures

ELETTRA - ST, CERN, INFN, COMEB, VDL-ETG, TMD

Objective:

Build and test, at low and high RF power, two prototypes of the X-band (12 GHz) accelerating structure designed for the CompactLight (XLS) project, a new class of linacdriven FEL facilities, based on a Horizon 2020 Design Study.

The CompactLight (XLS) design

- The XLS Collaboration gathers severa Study International Laboratories and Industries (26) with the aim to promote the design and construction of the next generation FEL based photon sources with innovative accelerator technologies.
- The objective is the design of a 5.5 GeV Xband linac, based on the CLIC technology, to drive a FEL facility with soft and hard X-

FAST

Our aim is to facilitate the widespread development of X-ray FEL facilities across Europe and beyond, by making them more affordable to construct and operate through an optimum combination of emerging and innovative accelerator technologies:

- > High brightness electron photoinjectors
- Very high gradient accelerating structures

Novel short period undulators
G. D'Auria_IFAST kick-off meeting May 04th, 2021

XLS Partners

Participant		Organisation Name	Country						
1	ST (Coord.)	Elettra – Sincrotrone Trieste S.C.p.A.	Italy						
2	CERN	CERN - European Organization for Nuclear Research	International						
3	STFC	Science and Technology Facilities Council – Daresbury Laboratory	United Kingdom						
4	SINAP	Shanghai Inst. of Applied Physics, Chinese Academy of Sciences	China						
5	IASA	Institute of Accelerating Systems and Applications	Greece						
6	UU	Uppsala Universitet	Sweden						
7	UoM	The University of Melbourne	Australia						
8	ANSTO	Australian Nuclear Science and Tecnology Organisation	Australia						
9	UA-IAT	Ankara University Institute of Accelerator Technologies	Turkey						
10	ULANC	Lancaster University	United Kingdom						
11	VDL ETG	VDL Enabling Technology Group Eindhoven BV	Netherlands						
12	TU/e	Technische Universiteit Eindhoven	Netherlands						
13	INFN	Istituto Nazionale di Fisica Nucleare	Italy						
14	Kyma	Kyma S.r.l.	Italy						
15	SAPIENZA	University of Rome "La Sapienza"	Italy						
16	ENEA	Agenzia Naz. per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile	Italy						
17	ALBA-CELLS	Consorcio para la Construccion Equipamiento y Explotacion del Lab. de Luz Sincrotron	Spain						
18	CNRS	Centre National de la Recherche Scientifique CNRS	France						
19	КІТ	Karlsruher Instritut für Technologie	Germany						
20	PSI	Paul Scherrer Institut PSI	Switzerland						
21	CSIC	Agencia Estatal Consejo Superior de Investigaciones Científicias	Spain						
22	UH/HIP	University of Helsinki - Helsinki Institute of Physics	Finland						
23	VU	VU University Amsterdam	Netherlands						
24	USTR	University of Strathclyde	United Kingdom						
25	UniTov	University of Tor Vergata	Italy						
26	USTR	Bilfinger Noell GmbH	Germany						
Tł	nird Parties	Organisation Name	Country						
AP1	OSLO	Universitetet i Oslo - University of Oslo	Norway						
AP2	ARCNL	Advanced Research Center for Nanolithography	Netherlands						
AP3	NTUA	National Technical University of Athens	Greece						
AP4	AUEB	Athens University Economics & Business	Greece						
AP5	КуТе	KYMA TEHN. DOO	Slovenia						

Italy	6
Neth.	3+1 Ass. Part.
UK	3
Spain	2
Australia	2
China	1
Greece	1+2 Ass. Part.
Sweden	1
Turkey	1
France	1
Germany	2
Switz.	1
Finland	1
Norway	1 Ass. Part.
Slovenia	1 Ass. Part.
Internat.	1

FAST

G. D'Auria_IFAST kick-off meeting May 04th, 2021

Activities and Deliverables

The two accelerating structures prototypes will be used to get a full validation at two RF operating regimes:

a) high gradient/low pulse repetition rate (60 MV/m @100Hz);b) low gradient/high pulse repetition rate (30 MV/m up to 1KHz).

Deliverables:

FAST

D7.5: Construction of the XLS accelerating structure pre-prototype. Development of production process and RF tests of the pre-prototype (@TRL 6/7)_M24

D7.6: Construction of the XLS accelerating structure full prototype.

Production process analysis and validation, RF tests of the full prototype (@TRL 7/8) M36

CompactLight Linac layout

Accelerating structure RF operating parameters

Parameter	Units		Value					
Frequency	GHz	(11.994	4				
Peak klystron power (100 - 250 Hz)	MW		50					
Peak klystron power (1000 Hz)	MW		10					
RF pulse length (250 Hz)	μs	-	1.5 (0.1	5)				
Waveguide power attenuation	%		≈ 10					
Average iris radius a	mm		3.5					
Iris radius a	mm		4.3-2.7	7				
Iris thickness t	mm		2.0-2.2	4				
Structure length L _s	m		0.9					
Unloaded SLED Q-factor Q_0			18000	0				
External SLED Q-factor Q_E			23300)				
Shunt impedance R	$M\Omega/m$	85-111						
Peak modified Poynting vector	$W/\mu m^2$	3.4						
Group velocity v_g/c	%	4.7-0.9						
Filling time t _f	ns		146					
Repetition rate	Hz	100	250	1000				
SLED		ON	OFF	ON				
Required klystron power	MW	44	44	9				
Average accelerating gradient	MV/m	65	30	30				

IFAST

Task 7.5 outline

	plan																																	
		2021						2022											2023												2024			
# Activity		1 2	2 3	4	56	7	8	9	10	11	12 [·]	13 1	4 15	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 3	5 3	6
1	1 Technical drawings for prototype production			A 15	<u>s c</u>	<u> </u>		J		IVI	A	<u>IVI -</u>	<u>1 1</u>	<u> </u>	5	0		U	J	<u> </u>		<u> </u>	<u>IVI</u>	J	<u> J </u>	<u>A</u>	5	0	<u>N</u>	D	J		<u>N A</u>	1
2 Thermo-mechanical analysis and temperature stabilization at different operating regimes			nonth	าร																														
3	3 Production process analysis and optimization			3 m	onth	s																												
4	First prototype fabrication								9 n	non	ths																							100100
5	5 RF characterization													1m	า																			
6 High power RF tests and validation																6	mo	nth	IS															
7	7 Production process analysis and optimization																	4	m															
8	Second prototype fabrication	9 months																																
9	RF characterization																													1m				
10 High power RF tests and validation																															4	mor	ths	

Thank you!

v 04^{ti}

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.