

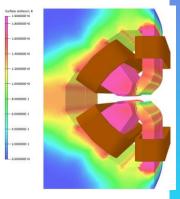
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

IFAST WP11.3

Permanent Magnet Quadrupoles & Combined Function Magnets for Ultra Low-Emittance Rings

IFAST kick-off meeting

Ben Shepherd, STFC Daresbury Laboratory


and Innovation

UK Research

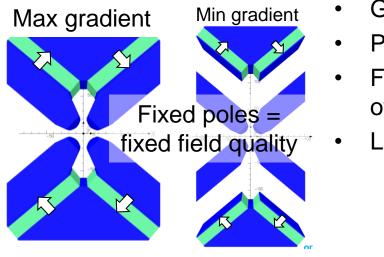
Task description

- Task 11.3: Permanent Magnet Quadrupoles & Combined Function Magnets for Ultra Low-Emittance Rings
 - Partners: <u>UKRI</u> Diamond Light Source Kyma
- This task addresses the need for reducing the electricity consumption and carbon footprint in future storage rings
- Two prototypes to be designed, assembled and tested: (D11.3)
 - PM-based strong focusing quadrupole magnet
 - PM-based combined function dipole-quadrupole (DQ) magnet
- Parameters similar to Diamond-II and other facilities
- Second-stage prototypes
 - Basic concept already tested
 - Examine requirements for cost-effective series production
- Adjustment using either coils or motors

UKRI's ZEPTO tunable PM quadrupole

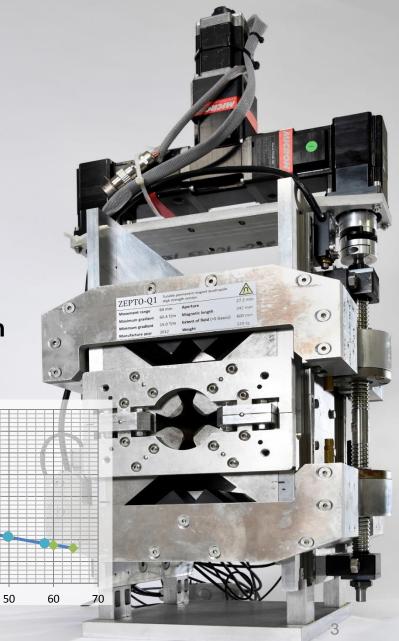
Diamond combined function DQ magnet

ZEPTO Q1: High Strength


- ZEPTO "Zero-Power Tunable Optics"
- High gradient: 60 T/m
 - Can reduce to 15 T/m by moving PMs up to 64 mm
 - Tuning using variable gap in magnetic circuit
- Magnetic force: 16.4 kN per side
 - Pulling PMs parallel to magnetic axis \rightarrow large forces
- Some unwanted magnetic centre movement (100 µm) due to ferromagnetic rails
 - 4 NdFeB blocks, each 18 x 100 x 230 mm

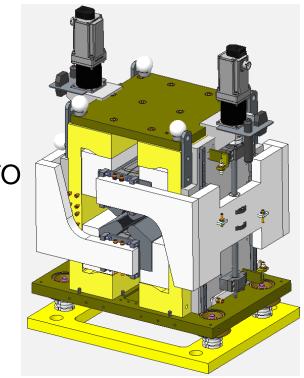
model stretched wire rotating coil

10


20

stroke [mm]

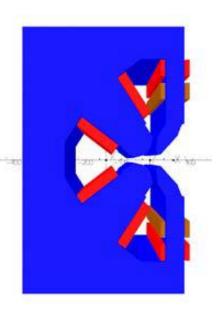
- Gradient 15-60 T/m
- Pole gap **27.2 mm**
- Field quality **±0.1%** over **23 mm**
- Length 230 mm



ZEPTO Diamond Quadrupole

- Aim: demonstrate operation of a ZEPTO quadrupole on a working accelerator
- Install a tunable PM quad as a drop-in replacement for an EM quadrupole
- To be installed at Diamond Light Source, on the BTS transfer line
- Enabled by STFC's Proof of Concept Fund
 - Step towards commercialisation of ZEPTO technology
- Design complete
 - Assembly and testing at Daresbury in early 2021
 - Installation at Diamond in May-June 2021 shutdown

- Similar design to ZEPTO-Q2
 - Outer shell for large tuning range
- SmCo blocks
 - improved temperature stability
 - radiation resistance
- Max gradient **19 T/m**
- Min gradient **0.5 T/m**
- Movement range 90 mm
- Aperture diameter **32 mm**
- Splittable to allow installation around vacuum chamber
- **Two independent motors** for magnetic centre correction


diamond

"Diamond-II" prototype

- DQ magnet
- Permanent magnet version
- Tunable over a small range maybe use coils

Parameter	Value	Unit	Parameter	Value	Unit	
Field	0.7	Т	Curvature Radius	16421	mm	
Gradient	-33	T/m	Yoke Material	Low carbon steel	-	
Half Gap at 0.7 T	~14.2	mm	Total Yoke Mass	~1150	kg	
Int. B	0.607	Tm	Good Field Region (GFR)	±10	mm	
Int. G	28.6	Т	ΔB/B within GFR	5E-04	-	
Iron Length	867	mm	ΔG/G within GFR	1E-03	-	

"PETRA-IV" prototype

- PETRA IV in TDR phase
- What to do with quadrupoles, DQs, sextupoles: EM or PM?
 - Quads: 90 T/m, 12.5mm radius
 - Sextupoles: 4000 T/m², 200mm length

DQs:	Name	Leff	Ltot [m]	Ø [mm]	Gradient max	ΔB/B (at radius 7.9 mm)
	DQ1	1.02	1.108	>25	0.28 T and 38.4 T/m	5.10^{-4}
	DQ2	0.795	0.895	>25	0.19 T and 27.0 T/m	5.10^{-4}

• Need to look at adjustment requirements

•

Outline plan

- MaRS staff to develop magnet design for Diamond-II PM-based prototype
- DLS staff to validate compatibility of design with Diamond systems
- Kyma to develop mechanical design, assemble and test magnet

Magnet Projects	numbers are level of effort	21											22								
Project	Task	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
IFAST grant agreement					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Diamond-II TDR phase		0	0	0	0	0	0	0	0	0	0	0									
Diamond-II booster magnets	Magnet design			0.5	0.5	0.5	0.5	0.5													
Diamond-II DQ magnet	Magnet design				0.8	0.8	0.5	0.4													
	Magnet design				0.4	0.4	0.2														
	Mechanical design					1	1	1	1	1	1										
	Procurement of materials									0.2	0	0	0								
	Assembly													2							
	QA & measurement														1						
PETRA-IV TDR phase		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PETRA-IV quadrupole	Magnet design									1	1	1	1								
	Mechanical design											2	2	2	2	2	2				
	Procurement of materials															0.2	0	0	0		
	Assembly																			2	
	QA & measurement																				1

