

ILC and CLIC in a few words...

linear collider, producing e⁺e⁻ collisions

CLIC ILC

- •Based on 2-beam acceleration scheme
- Gradient 100 MV/m
- •Energy: 3 TeV, though will probably start at lower energy (~0.5 TeV)
- Detector study focuses on 3 TeV

- •Based on superconducting RF cavities
- Gradient 32 MV/m
- •Energy: 500 GeV, upgradeable to 1 TeV (lower energies also considered)
- Detector studies focus mostly on 500 GeV

Luminosities: few 10³⁴ cm⁻²s⁻¹

Validated ILC concepts

ILD: International Large Detector

"Large": tracker radius 1.8m

B-field : 3.5 T

Tracker : TPC + Silicon

Calorimetry: high granularity particle flow

ECAL + HCAL inside large solenoid

SiD: Silicon Detector

"Small": tracker radius 1.2m

B-field : 5 T

Tracker : Silicon

Calorimetry: high granularity particle flow

ECAL + HCAL inside large solenoid

CLIC detector concepts will be based on SiD and ILD.

Modified to meet CLIC requirements

e.g. ILD concept adapted to CLIC

Changes to the ILD detector:

- 20 mrad crossing angle
- Vertex Detector to ~30 mm inner radius, due to Beam-Beam Background
- HCAL barrel with ~7 Λ_i with 1 cm tungsten plates
- HCAL endcap with ~7 Λ_i with 2 cm steel plates
- Forward (FCAL) region adaptations

... and similarly for SiD

Andre Sailer

Forward region (1)

Alain Herve (ETHZ), Hubert Gerwig (CERN)

Forward region (2)

Alain Herve (ETHZ), Hubert Gerwig (CERN)