LePIX: monolithic detectors in advanced CMOS

- Scope:
 - Develop monolithic pixel detectors integrating readout and detecting elements by porting standard 90 nm CMOS to wafers with moderate resistivity.
 - Reverse bias of up to 100 V to collect signal charge by drift
- Key Priorities:
 - Develop and optimize the sensor
 - Design low power (~ 1uW/pixel) front end electronics using low detector capacitance
 - Assessment of radiation tolerance
 - Assessment of crosstalk between circuit and detecting elements (may require special digital circuitry
- Need to carry development to a large matrix for correct evaluation

LePIX: monolithic detectors in advanced CMOS

- Submission for fabrication
 - Non-standard: ESD protection, special layers and mask generation, guard rings
 - Received chips on standard substrate with short (~80 ohms) in the guard ring, fix discussed with IBM for special lot on high resistivity, in the mean time measuring to learn as much as possible from the chips on standard substrate
- 7 chips submitted :
 - 4 test matrices
 - 1 diode for radiation tolerance
 - 1 breakdown test structure
 - 1 transistor test: already submitted once in test submission
- Significant testing effort (measurement setup, test cards...)

Circuitry of first matrix operational

- 4 zones of 8 columns with different input transistor
- Top part with buffers to read analog signal as it is collected
- Rest with sequential readout, top 16 rows with active reset (pulse), bottom 16 rows with diode reset

Pixel also needs some correction, but not shorted

Geometry

- Power is key!
- For tracking 10-15 cm by 1-2 cm device to be obtained by stitching
 - "Infinite" connectivity ~ 10 metal layers at ~ 0.xx micron pitch IF power kept low !!
 - Aiming at ~10-20 mW/cm2
 - Connection on one side: vbias, vdda, vddd, in, out (ex lvds)... => ~ 10 connections to pads
 - Options: wire bond or connector on the edge or special package (a la memory card)
 - How far do you need to go before one can put reasonably standard electronics?

For W Calo have to investigate practical geometry (is overlap allowable to generate wedge?)

LePIX: monolithic detectors in advanced CMOS: future 2012-2016

- Promising but challenging development (cfr mask generation issues).
- Key point is maintaining power consumption low ~10-20mW/cm2
- "infinite" connectivity on-chip, key technology is connection at the end (!)
- Several groups are contributing, planning several submissions in the next years. Updating planning in view of interest.
- Alice is seriously considering LePIX for 2016 upgrade
- CMS groups (including CERN CMS) are very interested in LePIX for tracker upgrade
- Contact/interest from RAL (ATLAS)
- Interest from TOTEM
- Calo ?

THANK YOU

