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 This is an extract of the final project of Luis Crespo Ruiz 
to get his Degree in Physics

Application of multidimensional classification 
techniques to Particle Physics in the presence of 
systematic errors

 https://repositorio.unican.es/xmlui/handle/10902/20598
Not yet tested on full HEP analysis, but very promising 

results worth being shared

Foreword
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 As you know, currently most particle physics analyses incorporate ML 
(or MVA) techniques.

 We all have heard many times the concern “what about systematics?”, 
“this is a black-box”, “what if you do not control the correlations...”

 A common practice to incorporate systematic uncertainties is to 
follow an equivalent procedure as for a classical cut analysis: 
1. I do my analysis based on ideal samples
2. I estimate the effect of the systematics in the input variables
3. I propagate the uncertainties through my selection (either cuts or 

MVA)
4. I repeat my analysis on this distorted samples and estimate the effect 

on my final result: efficiency, cross section, significance...
 For ML based, this means training in samples with ideal 

conditions
 That’s something, but 
 what if we rely on a variable that is poorly described and there are some 

other supposedly less discriminant but better in real life?

Motivation
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 Your ideal sample tells the 
algorithm to separate like 
that

An example: separate green and red
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 But if you don’t 
know very well how 
the x of your reds 
behaves...?

 It might be wiser to ignore the 
horizontal variable and cut 
differently
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 Can we make the ML algorithm learn the weaknesses of 
the variables in such cases?

 Propose to use the data augmentation technique
 let’s feed the machine with replicas with the weakness 

incorporated

 Relatively simple to implement in HEP
 Given our MC (or data) original samples, replicate each event 

several times according to a law driven by the systematics
o Basically, do the same you do to estimate the systematics

 Train on these altered samples (no need to perform the costly 
MC simulation)

The method
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 As often happens, in ML difficult to demonstrate the 
general validity

 Run instead on an example
 GEN + smearing-based example (true physics, simplified 

detector)
 Classification of the production of a dark matter 

candidate in association with a top pair (ttDM ) versus 
the SM production of ttbar, for different masses of DM
 Will show the extreme cases in DM mass, for low mass the 

two processes are basically indistinguishable while for high 
mass there is an easy separation

 Few variables: 3-momentum for two jets and two leptons and 
MET, invariant masses...

Testing the method
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 Study the classification for different algorithms 
 several shallow MLP, BDT, LD, SVM, Fisher

 Compare performance on systematic-modified samples 
after training under different conditions
 Training on ideal samples (standard way of systematic 

evaluation)
 Training with different choices of data augmented samples  

Testing the method
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Systematic on resolution 

As an example, assume a systematic that implies worsen the 
resolution of some of the variables, with a random gaussian 
noise
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 Check the effect of jet energy resolution
 Add an additional gaussian smearing to the jet energy (and 

propagate to derived quantities)
 Evaluate the signal efficiency at a different working points 

(1% efficiency for background in the plots shown)
When trained on zero-systematic samples and tested on 

systematic-modified samples important degradation for 
“some” of the methods.  Usual estimation of systematics

Jet energy resolution

Francisco Matorras, IFCA, SpainQuark , August 2021confinement



 Efficiency for signal as a function of the jet energy 
resolution uncertainty

 Some algorithms more robust than others, but variability 
on the particular training seen

 Some degradation in all cases

Jet energy resolution
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M=10 GeV
M=100 GeV
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Not surprisingly if we train with a smeared sample most 
of the effect is corrected
 Here training on samples smeared with equal σ as test sample

 Systematic nearly cancelled even for very large effects
 You might argue that this is obvious but still not always done...

Training on data augmented
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Systematic on scale/calibration 

As another example, assume a systematic that implies a 
correlated bias in some of the variables
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 Imagine instead a scale/calibration effect
 The energy is wrong by a given fixed scale for all jets in all events

 Jet energy on test samples scaled by a constant term
 Jet energy in training samples is smeared
 In all cases derived variables are recalculated 
 When trained on zero-systematic samples and tested on systematic samples, 

catastrophic degradation for “some” of the methods (NN).
 Equivalent to a huge systematic uncertainty!

Jet energy scale
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M=100 GeV
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 Let’s try to train with 
smeared samples 

 Try for different size of the 
smearing

 Most of the effect for a 20% 
bias is cancelled when training 
with smeared sample with 5-
20% sigma

 Similar result for a wide range 
of smearing

 Large variability with 
algorithms but would reduce 
related systematics from 50-
100% to a few %

Training on data augmented
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Test with a 20% bias, M=100 GeV
Efficiency as a function of the smearing 
applied to the training samples

, August 2021International Conference on New Frontiers in Physics

M=100 GeV



 Check  with a larger 
(huge) bias of 50% (all 
energies scaled by 1.5)

 Again, response is 
mostly recovered 
(systematic uncertainty 
reduced to few %) when 
training with a smearing 
of similar size as the 
bias 

Training on data augmented
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Test with a 50% bias, M=100 GeV
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 Cannot draw general conclusions from this simplistic 
example but:
 As it is very well known, the effect of the systematics is very 

strongly dependent on the type of algorithm, the working point 
and even the particular training.

 Not so difficult to find examples where systematic 
uncertainties totally destroy the performance of ML 
algorithms.

 Training on smeared samples cures most of the effect of 
resolution systematics, when the smearing is comparable to 
the systematic error

 Training on smeared samples cures most of the effect of scale
systematics, when the smear is comparable to the systematic 
error

Results
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 A very simple method based on data augmentation is 
proposed to mitigate the effect of systematic errors in ML-
based analyses
 Based on training on samples augmented from the original samples, 

which include the effect of the systematics
 Don’t need to resimulate events

 Easily implemented for most systematics, in a similar way as we 
usually calculate them

 It is implemented at the level of the variables, so it is valid for 
any ML algorithm.

 So far, only tested on simplified examples, but results promising
 Can recover performance even for very large systematic 

uncertainties
 ...but need to check on real physic examples

Conclusions and outlook
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