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Introduction

* Uncertainty relation

* Quantum mechanics by Somerfeld and Heisenberg
* Wave mechanics by Schrodinger
* Communication theory by Gabor

 Commutator relation [Q, P] = il

* Statistical signal processing

* Implementation of a stochastic process
* Quantum informatics

* Measurement problem
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A Definition of the Measurement Problem

* Foundations of QT by von Neumann

* Reversible evolution (no entropy production)
* Irreversible measurement (entropy production)
* The time operator nonentity

* Essential weakness of QT

® Chief link between QT and RT

* Time-energy commutator relation

* No Hamiltonian uncertainty [T, H| # il
* Liouvillian uncertainty [T, L] = il



Quantum ensembles

* Liouville-von Neumann mechanics P = p(P)
*p(0) =0,p() =L, p2; P) = 2ip(P)
* Density operator pT = p,p = 0,Trp =1
* Gleason's theorem p(P) = (p|P)

* Koopman-von Neumann mechanics p = p|1){(1]

* Density function p(|1)(1|) =1

* Hilbert space Li(ﬂ),p =p|1), Trp = f_(z pdu
* Transformation group Gt: Q- Q, o G 1= U



The time operator formalism

* Group of evolutionary operators

e Evolution of a variable UtF = F o Gt
* Evolution of a density U'TF = F o G ¢

e Stone theorem U Tt = elLt

* Liouville equation é = Lp

* Commutator relation
* Liouvillian operator [T, L] = il
* Evolutionary group [T, Ut | = tU!
* Cyclic group [T, U] = U



Complex systems physics

* Change in representation 1 = A(T)
e Lie group UT?t to the Markov semigroup W1t = AUTtA™1
* Irreversible evolution WTt, t < 0 is not positivity preserving

* Terms of the change

* Preservation of positivity p = 0 = Ap = 0
* Preservation of trace Tr p = Tr Ap
* Preservation of uniformity I = Al

* /A is invertible in a dense subset

* No loss of information concerning system's state



A Paradigm of the Measurement Process
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* Euclidean algorithm — = 1
b nq + 1
no +—

* Continued fraction sequence
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* Recurrence equation

hiv1 = Nip1hy + hi—qy kiv1 = njpk; i—1



The Ford diagram

* Difference of elements

Aé; = i1 — & =

* (Continued fraction series
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The Minkowski function
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The binary tree
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Wavelets and the Measurement Hierarchy

Domain I = [0,1]
Autoduality X = A= L? (1)
Wavelet base Y i of L*(DO1

Resolution of 1dentity

[ =|1X1| + Zi Y k) <¢j,k |

j>0 k=1

* (-] state
* |-) device



* Wavelets X (x) =

* Mother Waﬁfu@,lﬁ&n)( (x) = 9

The Haar base
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Wavelets 1n the interval domain

J .
Orthonormal base ¥ . (x) = 22W, (2/x — k)
Wavelets for L* (1) Yir(x) = 2n¥Pik(x +n)

Periodization axiom l,b jk+2J — 1/1 jk

Annihilation axiom ] < 0 = Y, = 0

Translation axiom l,b j k+m (x) = I,D jk (x — %



Wavelets and stochastic processes

Evolutionary operator Uf (x) = f(Rx)

xX+1

f (g) +f (=)
2

Adjoint operator U T flx) =

1
Evolution axiom U Jrl/J jk = \/_5 T,b j—1,k

Equivalent formulation

1 1
Ul/)j,k — _¢j+1,k + _¢j+1,k+2j

V2 V2



Wavelet variables

Equal distribution within scale Y g = jk+m

Equal distribution across scale Y ; i = Uy jk
Zero mean EYj . = (1 l/Jj’k> =0

Unit variance DY j = ‘lpj,kHZ =1

Mutual independence l/J jk + l,b I m

EVihim = (Wik|¥im) =0 =EY; k EYym




A measurement hierarchy of the wavelet base

sssss

2
Distribution density ‘l/J jk ‘

2k—1

Estimation f le‘l,b ik (x)‘zdx ~ yreul

Time operator

T = Z ijllpj,k> <¢j,k |

720 k=1
Commutator relation [U T T] =Ut'= [T, U]=U




The space of signal ensembles

Haar's extension U XF =FoR
Baker map B(x,y) =

(Zx,%), 0<x<1,
(2x-1,22), Y,<x<1

Extended space L% (I X 1) = L?(I) & L*(I)
Signal ensembles F: T — L2 (1)



Extension of the time operator

Representation F = [1){(A| + Zj,k |l/)j,k> <Dj,k |

o Approximation (4| = (1|F, detail coefficients <Dj,k | = <l/) jk |F

1
Matrix multiplication FG (x,y) = [ F(x, t)G(t,y)dt
Time operator T, for the Haar evolution U,
Extension of the time operator T = €T, C T

Extension of the evolutionary operator U = CU, C T

Change of the base C: X = W; k



The density evolution

Density operator p = FFT ||F|l =1

Evolutionary operator (UF)(UF)T = U,[)UJr = Up
Positivity preservation p = 0 = UTp > 0

Time operator [T, U]p = [T, U]pU T = Up
Change in representation 1 = A(T)

Markov semigroup M1t = AUTEAT



Orthogonal Wavelets and Projective

Measurements

Wavelet base of the space L* (1) © 1

Mutually independent variables l,b Kk

Distribution densities ‘l/) jk ‘ ;
The space of signal ensemblesL? (I X 1) = A QR X
Embedment of devices |+) <|+)(1]
Embedment of states (+ | <= |1)(




The von Neumann measurement

Orthogonal projectors Pj,k = |y j,k) <1/Jj,k |

Probability <P|P1k> = HDj,k‘ ‘= |dj,k|2
2

Expectation |dj,k|2 = Ele,k

Reduction of the density operator

2
Mp = z‘dj,k‘ Pjr = z P PPk
j.k ]k



The optimal measurement

The measurement operator ), jk d jk P] K | s
Optimal base FF = Zj,k djo,kpj?k = Zj’k|L|J]O-’k> <Dj?k |

Decorrelation of detail coefficients <Dﬁk | — jo,k<1|1?,k|

Approximate decorrelation in a suboptimal base

(D | = Z AWy (W2

[k211;f] [lzllzll] =Q= (Y1m|¥jk) = 0



The Euclidean paradigm

Optimal measurement F|l|1j,k> — dj,kllljj,k>

Eigenvalues d; = Z_J/ZC]- — F = d(T)
* Optimal time T = 2, > Zij=1]'|1/1j,k> <1/Jj,k |

Density operator 0 = FFT/”F”2

Normalization by ||F||? = Zj 2-J Cj



The Euclidean ensembles

Operator function of optimal time F = d (T')

27 J¢;
Contribution of a digit |d|? — g y.2-Jc;
j J

Detail coefficients <Dﬁk | = d]- <1/J ik |

Statistical stationarity <Dj,k | = <Dj,m |



Evolution of the measurement process

Projective measurement mtp Z jk ] k pP
Temporal decomposition It j = D K pe jk
Measurement evolution Wt 1 = Zuﬂﬁju*

Measurement process JIt = ), j 27 UM,

Elementary measurement EUEO — SBO
* Mop = PypPy
Elementary device |rg){(1]|



Crossing between states and devices

Measurement evolution M;p = 2/ W MU p
Density evolution UTp = (UTF)(UTFH)T

State into device UT|IWWo| = |Wo 1]
Measurement display gp = (PoF)(PyF )T
Device into state U|Yg){1]| = |1)}{Wo|

Root of the ensemble M;: F - 2’/ U/P,UTF



Psychophysical parallelism

Boundary between states and devices which is arbitrary
Crossing of devices into states and vice versa

Bohr, Hoffding and Fechner

Identity view

* Outer psychophysics (sensation and stimulation)

* Inner psychophysics (sensation and neuroactivity)

Irreversibility and observer's mind

Change in representation A = A(T)



From the outer to the inner psychophysics

J
* Measurement process Mj: '+ )5 2 /2 Pix F

* Evolution of projectors U Z k f)]"k = Z k Pj+1,k
e Semigroup WT = AUTAL

M1 =2 ) W2'2PF =2 ) ATEBAT12'/2P F
k k

* Detail coefficients P;  F = [ j,k) <Dj,k |

17
* Hidden variables 5; = AT-127/ 2P;  F
e Markov process V223 2kSik = Xk Si+1k



Wavelet domain hidden Markov model

Approximate decorrelation of coefficients D= (Dj,k)

Markovian tree of hidden variables S = (5 i k)
Statistical stationarity within each scale

Baum-Welch algorithm for parameters estimation

* Expectation maximization given realized values of coefficients

space
/. \
@ /.“\
{ o0 o0 [

VAN

NN

o0 00 00 00 0D 00 00 00

scale index

v



Canonical relation

Global entropy of the Markovian tree H (S)

Increase of local entropy H (Sj ) 7
Entropy of coefficients H(D) = H(S) + H(D|S)

Outer psychophysical information

H(CD) = H(D) + log|detC| = H(D)
Inner psychophysical information H (S)
Irreducible randomness H (D|S)



The Fechner law

Logarithmic dependence between outer and inner scales

_J
Eigenvalues d]- = 2 /2 Cj
Uniform distribution of Cj for normal numbers

Exponential decay of detail coefficients across scale

* Almost all ensembles of the Euclidean paradigm



Frame Wavelets and General Measurements

* Frame L|Jj’k
Al < Z|l|1j,k> <1|Jj,k | = BI
Jj.k

e Parseval frame A = B =1

I = 2'¢j,k> <1|Jj,k |
Tk

I = ZNJj,k) <1T1j,k |
Tk

® Dual frame LTJ jk



Canonical dual

* Fsuchthat = {; k) is Parseval frame

[= ) W) (W 2

Jk

i i= 41 = ZNJj,k) <1|1j,k |
TK



Wavelet frame

Periodization axiom ) jk+2) = Y jk

Annihilation axiom j < 0 = Y, = 0
. . _ m
Translation axiom ) j k+m (x) =y jm (x — by
Evolution axiom UTY; ,, = — (F
],k N

General measurement p = ), jk M j kP M j,kJr



General measurement

* Measurement operators | = Z jk M jk M j,kJr

* Resolution of identity [ = Zj,kllljj,k> <LTJj,k |
* Iy = M’j,k) <"ij;’< |
LTJj,k” =1

* Zj,k Pj,k Pj,k+ = Zj,k|1|1j,k) <‘|Jj,k | = A

* Mj =F Yir) <lTJj,k |

* Euclidean frames



The time operator

. ] y
* Time of wavelets T = ijo Z;zczljll/)j,k> <1/Jj,k |

=T quij = z/)j,k)<1/)j,k =

720 k=1
* Commutator relation [F T =, U] = U




An ancillary extension

Frame |L|Jj,k>

* Dual frame <LTJ jk |

Parseval frame F l,b j,k)
Riesz base | ik =

~

* Biorthogonal base <Y x|

Orthonormal base F Y >

® Orthonoraml base <Y j, =



The optimal representation

* Optimal frame F' = Zj,k d; |L|J]Ok) <L|J]0-,k | = d(T)

* Optimal time T = ), jk j NJ;)]() <¢?,k |

* Ancillary extension

>F< = z d? W2 ><?, |
J.k

0 . ~0, —J0 (0]
<Dji [=<Uji| > F<=dj <y |

. : 0 — 0 0
Independent variables <Dj,k=| —dj <Yy j,k=|



Conclusion

Measurement problem in terms of mathematical physics
Statistical signal processing and quantum informatics
Time operator formalism of complex systems
Euclidean paradigm of the measurement process
Psychophysical parallelism

Wavelet domain hidden Markov model

General measurements and Euclidean frames



