Jet Formation with Spectral Clustering
arXiv:2104.01972

H.Day-Hall1,2
Supervised by; S.Dasmahapatra1, S.Moretti1, C.H.Shepherd-Themistocleous2

1University of Southampton, UK
2Rutherford Appleton Laboratory, UK

7th October 2021 at ICNFP 2021
Outline

1 Jet physics

2 Spectral clustering theory
 Aim
 Relaxation

3 Embedding space
 Appearance

4 Results
 Conclusion

5 Backup slides
 Timing
 Parameters
 Shape variables
Jet formation involves grouping decay products to estimate the momentum and identity of the particle that decayed.

This activity has been compared to reading tea leaves...

www.quantumdiaries.org/2011/04/22/when-youre-a-jet-youre-a-jet-all-the-way/
Spectral Clustering

Spectral clustering is a machine learning technique for picking out clusters. It doesn’t use a neural net.

Here is a image representing hits on the unrolled barrel. Each point is a detected track, its colour roughly indicates which shower it was generated by. It contains:

- 4 b-showers from a light Higgs cascade.
- Background showers from initial state radiation.
How likely are two particles to belong in the same jet?

Distance; \(d_{i,j} \)

\[
= \sqrt{\delta \phi_{i,j}^2 + \delta y_{i,j}^2}
\]
How likely are two particles to belong in the same jet?

Distance; \(d_{i,j} \)

\[
= \sqrt{\delta \phi_{i,j}^2 + \delta y_{i,j}^2}
\]

Similarity; \(a_{i,j} \)

\[
= \exp \left(-\frac{d_{i,j}^2}{\sigma_v} \right)
\]
Ideally, particles connected by high similarity would be in the same jet. Particles separated into different jets would only have low similarity between them.
Ideally, particles connected by high similarity would be in the same jet. Particles separated into different jets would only have low similarity between them.

The size of the groups should be about the same.
Ideally, particles connected by high similarity would be in the same jet. Particles separated into different jets would only have low similarity between them.

The size of the groups should be about the same.

Cost function:

\[\text{NCut} = \sum_k \frac{\sum_{i \in G_k, j \in \bar{G}_k} a_{i,j}}{|G_k|} \]

Where

The numerator is the similarity crossing the boundary of \(G_k \).

\[|G_k| = \sum_{i \in k} \sum_j a_{i,j} \] seeks to balance cluster size.
Let’s create some indicator vectors

\[f(k)_i = \begin{cases} \frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases} \]

If these could be found it would define the jets.
Let’s create some indicator vectors

\[f(k)_i = \begin{cases} \frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases} \]

A Laplacian helps with that; let \(D_{i,j} = \delta_{i,j} \left(\sum_k a_{i,k} \right) \)

\[L_{i,j} = D_{i,j} - a_{i,j} \]

If these could be found it would define the jets.
Jet Formation with ML
Day-Hall

Jet physics
Spectral clustering theory
Aim
Relaxation
Embedding space
Appearance
Results
Conclusion
Backup slides
Timing
Parameters
Shape variables

Spectral Clustering Indicators

\[f(k)'Lf(k) = \sum_{i,j} f(k)_i L_{i,j} f(k)_j \]

\[= \sum_{i,j} f(k)_i \left(\delta_{i,j} \sum_p a_{i,p} - a_{i,j} \right) f(k)_j \]

\[= \sum_i \left(f(k)_i^2 \sum_p a_{i,p} - \sum_j f(k)_i f(k)_j a_{i,j} \right) \]

\[= \sum a_{i,j} \left(f(k)_i^2 - f(k)_i f(k)_j \right) \]

\[= \frac{1}{2} \sum a_{i,j} \left(f(k)_i - f(k)_j \right)^2 \]
Use the definition of indicator vectors again:

\[
f(k)_i = \begin{cases}
\frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\
0 & \text{otherwise}
\end{cases}
\]

This gives something familiar looking...

\[
f(k)'Lf(k) = \sum_{i \in G_k, j \notin G_k} \frac{a_{i,j}}{|G_k|}
\]
Use the definition of indicator vectors again:

$$f(k)_i = \begin{cases} \frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases}$$

This gives something familiar looking...

$$f(k)'Lf(k) = \sum_{i \in G_k, j \notin G_k} \frac{a_{i,j}}{|G_k|}$$

Spectral Clustering
Indicator vectors
It’s part of the cost function;

$$\text{NCut} = \sum_k \sum_{i \in G_k, j \in \bar{G}_k} \frac{a_{i,j}}{|G_k|}$$
Use the definition of indicator vectors again:

\[
f(k)_i = \begin{cases}
\frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\
0 & \text{otherwise}
\end{cases}
\]

This gives something familiar looking...

\[
f(k)'Lf(k) = \sum_{i \in G_k, j \notin G_k} \frac{a_{i,j}}{|G_k|}
\]

Spectral Clustering

Indicator vectors

It’s part of the cost function;

\[
\text{NCut} = \sum_k \sum_{i \in G_k, j \notin G_k} \frac{a_{i,j}}{|G_k|}
\]

So if \(F \) is a matrix with rows of \(f(n) \);

\[
\text{NCut} = \text{tr}(F'LF) = F'TF
\]
Use the definition of indicator vectors again:

\[f(k)_i = \begin{cases} \frac{1}{\sqrt{|G_k|}} & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases} \]

This gives something familiar looking...

\[f(k)'Lf(k) = \sum_{i \in G_k, j \notin G_k} \frac{a_{i,j}}{|G_k|} \]

Spectral Clustering
Indicator vectors

It’s part of the cost function;

\[\text{NCut} = \sum_k \sum_{i \in G_k, j \in \bar{G}_k} \frac{a_{i,j}}{|G_k|} \]

So if \(F \) is a matrix with rows of \(f(n) \);

\[\text{NCut} = \text{tr}(F'LF) = F'TF \]

Finally, let \(T = D^{1/2}F \). Then \(T'T = I \), so

\[\text{NCut} = \frac{T'D^{-1/2}LD^{-1/2}T}{T'T} \]
To minimise this cost function, take eigenvectors of

\[L = D^{-\frac{1}{2}} (D - A) D^{-\frac{1}{2}} \rightarrow L\mathbf{v}_n = \lambda_n \mathbf{v}_n \]
To minimise this cost function, take eigenvectors of
\[L = D^{-\frac{1}{2}} (D - A) D^{-\frac{1}{2}} \rightarrow Lv_n = \lambda_n v_n \]

\[v_1, v_2 = \begin{bmatrix} v_{11} \\ v_{12} \\ \vdots \\ v_{1N} \end{bmatrix}, \begin{bmatrix} v_{21} \\ v_{22} \\ \vdots \\ v_{2N} \end{bmatrix} \]
The eigenvectors of L create a multidimensional embedding space.

$$Lv_n = \lambda_n v_n$$

Physical space

Eigenvector 0

Eigenvector 1
Spectral Clustering
Jet shape
Spectral Clustering
Jet shape

Jet Formation with ML
Day-Hall

Jet physics
Spectral clustering theory
Aim
Relaxation
Embedding space
Appearance
Results
Conclusion
Backup slides
Timing
Parameters
Shape variables
Spectral Clustering
Jet shape
Results

Light Higgs cascade

Spectral and anti-kt radius 0.8 both give good narrow mass peaks with the correct location. Only spectral is producing good mass peaks and multiplicity.

Spectral creates the highest 4-jet multiplicity. Many events are impossible to reconstruct due to low energy.
Jet Formation with ML
Day-Hall

Jet physics
Spectral clustering theory
Embedding space
Appearance

Results
Conclusion

Backup slides
Timing
Parameters
Shape variables

Heavy Higgs cascade

Anti-kt with radius 0.4 gives slightly better multiplicity than Spectral.

Spectral and anti-kt radius 0.8 both give good narrow mass peaks with the correct location.

Spectral is producing good mass peaks and multiplicity.

Heavy Higgs

SM Higgs with stronger signal

SM Higgs with weaker signal
Results

Semileptonic top decay

Anti-kt radius 0.4 produces the best mass peaks. Spectral is an improvement on anti-kt radius 0.8.

Anti-kt 0.4 is producing good mass peaks and multiplicity, spectral is partially mimicking this.
Spectral clustering offers a deterministic crisp jet formation algorithm, without any use of learnt parameters or black box elements. It is remarkable for its ability to adapt to various data sets.

arXiv:2104.01972
Jet Formation with ML
Day-Hall

Jet physics
Spectral clustering theory
Aim
Relaxation
Embedding space
Appearance
Results
Conclusion
Backup slides
Timing
Parameters
Shape variables

End

Thank you!
The algorithm is currently $O(N^3)$.
Spectral Clustering Parameters

- σ_v and α are used to define the similarity;

 $$a_{i,j} = e^{-d_{i,j}^\alpha/\sigma_v}.$$
Spectral Clustering Parameters

- σ_v and α are used to define the similarity:
 \[a_{i,j} = e^{-d_{i,j}^\alpha / \sigma_v} \].
- k_{NN} removes some similarities to reduce noise.
Spectral Clustering Parameters

- σ_v and α are used to define the similarity:
 $$a_{i,j} = e^{-d_{i,j}^\alpha/\sigma_v}.$$
- k_{NN} removes some similarities to reduce noise.
- λ_{limit} and β make use of the information in the eigenvalues to prioritise the eigenvectors.
Spectral Clustering
Parameters

- σ_v and α are used to define the similarity;
 $$a_{i,j} = e^{-d_{i,j}^\alpha/\sigma_v}.$$
- k_{NN} removes some similarities to reduce noise.
- λ_{limit} and β make use of the information in the eigenvalues to prioritise the eigenvectors.
- When the mean distance in the embedding space rises over R, the clustering stops.
The parameters are not fine tuned. This can be seen if we plot the performance as the parameters change;

Dark blue areas, indicating low loss, show parameter combinations with good performance.
Spectral Clustering
Parameters

For contrast, on the right is the parameter space of the generalised k_T algorithm.
Spectral Clustering
Stopping condition

\[R = 1.26 \]

- After cut off
- Before cut off
- Mean

Change in Mean Distance

- Jets merge
- Dimension removed
Spectral Clustering
Shape variables

Shape variables are dependant on the clustering algorithm

Mass
Thrust
Oblateness
Sphericity
Spherocity

Parameters
- Mass
- Thrust
- Oblateness
- Sphericity
- Spherocity

Backup slides
Timing
Parameters
Shape variables