"New measurement of radiative decays at the NA62 experiment at CERN: $K_{e3\gamma}$ "

<u>Gianluca Lamanna</u>

On behalf of the NA62 collaboration

ICNFP2021-30.8.2021

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\gamma})$ decay

- Dominant Inner Bremsstrahlung (IB) decay amplitude
 - **Divergent** for $E_{\gamma} \rightarrow 0$ and $\theta_{e\gamma} \rightarrow 0$
 - Parametrized in terms of K_{e3} form factors
- Direct emission (DE) about 1% of total amplitude
 - Calculation up to order p⁶ in ChPT
 - The error on the DE amplitude is dominated by unknown radiative corrections and higher-order chiral corrections

Branching ratio measurements: present status

$$R = \frac{Br(K_{e3\gamma})}{Br(K_{e3})} = \frac{Br(K^+ \to \pi^0 e^+ \nu \gamma \mid E_{\gamma}^{cut}, \theta_{e,\gamma}^{cut})}{Br(K^+ \to \pi^0 e^+ \nu(\gamma))}$$

- Experimentally cuts on minimal photon energy and minimal photon-positron opening angle (in kaon rest frame) are applied.
- Theoretical predictions and experimental measurements are given for three sets of cuts.

	E _γ cut	$\theta_{e,\gamma}$ cut	ISTRA+ (x10⁻²) [Akimenko et al. PAN 70, 702 (2007)]	OKA (x10⁻²) [Polyarush et al. EPJ 81, 2, 161 (2021)]	O(p⁶) ChPT (x10⁻²) [Kubis et al., EPJ C50, 557 (2007)]
R ₁	$E_{\gamma} > 10 \text{ MeV}$	$\theta_{e,\gamma}$ > 10°	1.81 ± 0.03 ±0.07	1.990 ± 0.017 ±0.021	1.804 ± 0.021
R ₂	E_{γ} > 30 MeV	θ _{e,γ} > 20°	0.63 ± 0.02 ±0.03	0.587 ± 0.010 ±0.015	0.640 ± 0.008
R ₃	$E_{\gamma} > 10 \text{ MeV}$	$0.6 < \cos \theta_{e,\gamma} < 0.9$	0.47 ± 0.02 ±0.03	0.532 ± 0.010 ±0.012	0.559 ± 0.006

• Most recent calculation of $R_2 = (0.56 \pm 0.02)\%$ [Khriplovich et al., PAN 74, 1214 (2010)]

T-Asymmetry

 Even without measuring the lepton polarization, it's possible to define a T-odd observable (in the kaon rest frame):

$$\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_K^3} \qquad \qquad A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$$

- In principle $A_{\xi} \neq 0$ is a indication of **T-violation**
 - Non-zero asymmetry could be due to one-loop (and higher order) electromagnetic and hadronic corrections [Muller et al., EPJ C48, 427]
 - $A_{\xi} = -0.59 \times 10^{-4}$ (electromagnetic) and $A_{\xi} = 0.9 \times 10^{-6}$ (O(p⁶) SD contribution)
 - $\bullet~$ No strong dependence on the experimental cut on ${\rm E}_{\!\gamma}$ and $\theta_{e,\gamma}$

The NA62 experiment @CERN

- NA62 is a fixed target experiment at CERN SPS
- Detector installation completed in 2016
 - 2016, 2017 and 2018 of physics runs
 - Data taking re-started in July 2021
 - Data taking approved up to CERN LS3
- Main goal: $\operatorname{Br}(K^+ o \pi^+ \nu \overline{\nu}$) measurement
 - Measurement from full 2016+2017+2018 data se recently published [JHEP 06 (2021) 093]
 - Broad physics program thanks to unprecedented statistics for many decay modes

G.Lamanna – New measurement of radiative decays @NA62

NA62 Detector postcard

- High energy kaons decay in-flight technique in ~60 m decay region
- 75 GeV/c hadron beam from 400 GeV/c primary proton beam impinging on beryllium target
- Unseparated secondary beam (70% pions, 24% protons, 6% kaons)
- Nominal total rate (on GTK3) 750 MHz, O(10¹²) pot per spill, ~3.5 s effective spill
- Average beam particle rate during 2018 data-taking: **450-500 MHz**

NA62 Detector postcard

[[]JINST 12 P05025 (2017)]

- Beam spectrometer (GTK)
- Particle identification system (KTAG, RICH, MUVs)
- Decay products spectrometer (STRAW)

- Electromagnetic Calorimeter (LKR)
- Veto system (LAV, IRC, SAC, CHANTI, MUV0, HASC)
- Multi level (L0, L1, L2) trigger

- The signal $(K^+ \rightarrow \pi^0 e^+ \nu \gamma)$ and the normalization $(K^+ \rightarrow \pi^0 e^+ \nu)$ share most of the selection criteria \rightarrow first-order-cancellation of systematics effects.
- Acceptances evaluated with GEANT4 based MC
- Trigger efficiencies measured with data
 - Same trigger selection for signal and normalization
- Preliminary results based on full 2017 and 2018 data sets

- K⁺ momentum reconstructed in GTK, positron momentum reconstructed in STRAW: decay vertex identified by K⁺ and positron tracks;
- K⁺ positively identified with KTAG;
- Positron PID with RICH ring radius and LKr-STRAW E/p (π^+ and μ^+ rejection);
- $\pi^0 \rightarrow \gamma \gamma$ identified selecting two γ s in LKr and reconstructing the invariant mass;
- Radiative γ identified selecting in-time additional isolated cluster in LKr;
- In-time extra activity in Veto system not allowed;
- In-time signal in MUV3 not allowed;
- Dedicated kinematic cuts to reject $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ and $K^+ \rightarrow \pi^+ \pi^0$ backgrounds;
- Final kinematic selection based on the missing mass (→neutrino) both for signal and normalization

$$m_{miss}^{2}(K_{e3\gamma}) = (P_{K} - P_{e} - P_{\pi^{0}} - P_{\gamma})^{2} = m^{2}(\nu)$$

• E_{γ} and $\theta_{e,\gamma}$ cuts applied after the selection (R_1 , R_2 , R_3 samples)

<u>R₁: E_y>10 MeV and $\theta_{e,y}>10^{\circ}$ </u>

INFN

G.Lamanna – New measurement of radiative decays @NA62

<u>R₂: E_y>30 MeV and $\theta_{e,y}>20^{\circ}$ </u>

INFN

G.Lamanna – New measurement of radiative decays @NA62

<u>R₃: E_y>10 MeV and 0.6<cos $\theta_{e,y}$ <0.9</u>

INFN

G.Lamanna – New measurement of radiative decays @NA62

Backgrounds

- In-time accidental LKr cluster superimposed with $K^+ \rightarrow \pi^0 e^+ \nu$ or $K^+ \rightarrow \pi^+ \pi^0$ (with mis-ID π^+)
- Background valuated with out-of-time sidebands in dedicated study
- Other backgrounds evaluated with MC

Normalization: K_{e3}

INFN

Final statistics

	N ^{obs}	Uncertainty	Acceptance [%]
Ke3 (norm)	$66.378 \cdot 10^{6}$	0.01%	3.839±0.002
Ke3γ (R1)	129.6 · 10 ³	0.3%	0.443±0.001
Ke3γ (R2)	53.6 · 10 ³	0.4%	0.513±0.002
Ke3γ (R3)	39.1 · 10 ³	0.5%	0.431±0.002

- Factor 3 improvement with respect to previous results on statistical uncertainty
- Uncertainties on acceptance limited by statistics in MC samples

B/3 < 1%	
Small contribution	
to the uncertainty of	
the final R _i	
measurements	

D/C < 10/

Bkg Source	R ₁	R ₂	R ₃
Accidentals	(4.9±0.2±1.3)· 10 ²	(2.3±0.2±0.3) · 10 ²	(1.1±0.1±0.5)· 10 ²
$K^+ o \pi^0 \pi^0 e^+ u$	(1.1±1.1)· 10 ²	(1.1±1.1)· 10 ²	(0.07±0.07)· 10 ²
$K^+ o \pi^+ \pi^0 \pi^0$	< 20	< 20	< 20
$K^+ o \pi^+ \pi^0 \gamma$	< 2	< 2	< 2
Total	(5.9±1.7) · 10 ²	(3.4±1.1)· 10 ²	(1.1±0.6)· 10 ²
B/S	0.46%	0.64%	0.29%

NA62 preliminary R_i measurements

	O(p6) ChPT (x10 ⁻²)	ISTRA+ (x10 ⁻²)	OKA (x10 ⁻²)	NA62 Prelim. (x10 ⁻²)
R ₁	1.804 ± 0.021	1.81 ± 0.03 ±0.07	1.990 ± 0.017 ±0.021	1.684 ± 0.005 ±0.010
R ₂	0.640 ± 0.008	0.63 ± 0.02 ±0.03	0.587 ± 0.010 ±0.015	0.599 ± 0.003 ±0.005
R ₃	0.559 ± 0.006	0.47 ± 0.02 ±0.03	0.532 ± 0.010 ±0.012	0.523 ± 0.003 ±0.003

- Preliminary results based on 2017+2018 data set
- Improved precision with respect to the previous measurements
- Relative discrepancy with the theory of 6-7% in all three measurements
- NA62 for R₂ is half way between the two latest theoretical predictions
 - (0.640±0.008)% [Kubis et. Al., EPJ C 50, 557 (2007)]
 - (0.56±0.02)% [Khriplovich et al., PAN 74, 1214 (2010)]

	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.5%	0.6%
Acceptance from MC	0.3%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modeling	0.5%	0.6%	0.5%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.6%
Total stat+syst	0.7%	1.0%	0.8%
IULAI SLALTSYSL	0.770	1.070	0.070

NA62 preliminary A_{ξ} measurements

$$A_{\xi} = A_{\xi}^{Data} - \left(A_{\xi}^{MCreco} - A_{\xi}^{MCgene}\right) \simeq A_{\xi}^{Data} - A_{\xi}^{MCReco}$$

	R1 (x10 ⁻²)	R2 (x10 ⁻²)	R3 (x10 ⁻²)
A_{ξ}^{Data}	0.2±0.3	0.1±0.4	-0.6±0.5
A_{ξ}^{MCgene}	-0.01±0.01	0.00±0.02	-0.01±0.02
A_{ξ}^{MCreco}	0.3±0.2	0.4±0.3	0.3±0.5
A_{ξ}	-0.1±0.3 _{stat} ±0.2 _{MC}	-0.3±0.4 _{stat} ±0.3 _{MC}	-0.9±0.5 _{stat} ±0.4 _{MC}

- Precision of R₃ asymmetry improved by a factor greater than 3 • $A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \cdot 10^{-2}$
- First measurements ever performed for R₁ and R₂ T-asymmetry

Conclusions

- New preliminary results from the NA62 experiment on $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ based on data collected in 2017 and 2018 are presented;
- Experimental relative precision on R_j measurements improved by a factor ~3 with respect to the previous measurements;
- The relative uncertainty is <1%;
- The measurements show a 6-7% relative discrepancy with ChPT O(p⁶) calculations;
- T-asymmetry measured for the first time for R₁ and R₂, improvement by a factor greater than 3 for R₃;
- The T-asymmetry measurement is compatible with zero within the experimental sensitivity. Still two order of magnitude from the theoretical expectation.

SPARES

CINFN

G.Lamanna – New measurement of radiative decays @NA62

T-asymmetry in log scale

G.Lamanna – New measurement of radiative decays @NA62

