A machine learning procedure for the selection of muon track candidates in the CBM experiment

Anna Senger

10th International Conference on New Frontiers in Physics (ICNFP 2021)

CREMLINP LU Connecting Russian and European Measures for Large-scale Research Infrastructures

- AIR

Outline

- Dilepton physics
- Muon setup of CBM
- Muon identification
- Cut optimization with machine learning procedure
- Reconstruction results
- Conclusions
- Next steps

Dimuon physics: highlights

Thermal radiation

Thermal Dileptons as Fireball Thermometer and Chronometer Ralf Rapp, Hendrik van Hees arXiv:1411.4612 Fireball model T. Galatyuk et al. Eur. Phys. J. A 52 (2016) 131

Charm production at threshold energies in cold and dense matter:

sub-threshold charm production via $N^* \rightarrow \Lambda_c + D$ $N^* \rightarrow N + J/\psi$

Sub-threshold charm production in nuclear collisions J. Steinheimer, A. Botvina, M. Bleicher, arXiv:1605.03439

Muon Chamber Systemglobal tracking, muon identification via hadron(MUCH)absorption in massive material

Transition Radiation global tracking **Detector (TRD)**

Time of Flight Detectorparticle identification via time measurement(TOF)

Configurations

low beam energies (up to 4 AGeV for Au beam)

μ reconstruction chain

STS track reconstruction ↓ extrapolation of the tracks through downstream detectors up to TOF

selection of the muon track candidates

calculation of the invariant mass spectra

Parameters for muon track candidate selection

- Vertex
 χ²/NDF
- STS
 - number of hits
 - χ²/NDF
- MUCH
 - number of hits
 - χ^2/NDF

- TRD
 - number of hits
 - χ²/NDF
- TOF*
 - mass cut

* rejection of punch through hadrons

Cut optimization

• <u>Manual:</u>

• χ^2 of the reconstructed tracks

mass cut in TOF

Artificial Neural Network

χ^2_{MUCH} vs. χ^2_{STS}

Test of ANN for $\omega \rightarrow \mu \mu$ reconstruction

Background: central UrQMD events @ 8 AGeV/c ω→μμ from PLUTO generator TMultiLayerPerceptron https://root.cern.ch/doc/master/classTMultiLayerPerceptron.html

ANN input: preselection

- χ^2/ndf
 - in primary vertex < 10</p>
 - in STS < 10
 - in MUCH < 10
 - in TRD < 10
- Number of hits
 - in STS > 5
 - in MUCH > 8
 - in TRD > 0
 - in TOF > 0

 ω + central Au+Au @ 8 A GeV/c

input parameters

 ω + central Au+Au @ 8 A GeV/c

purity

0.2

0.4

Ω

efficiency

0.6

0.8

ANN output

Positive tracks

Negative tracks

efficiency = signal passing ANN cut / total signal purity = signal passing ANN cut / (signal+background passing ANN cut)

Analysis results

ω + central Au+Au @ 8 A GeV/c

significance

ω efficiency, %

ω/background ratio

ω + central Au+Au @ 8 A GeV/c

Comparison with manual cuts

cuts	ε _ω %	ω background ratio	norm. significance
manual	1.21	0.016	1
ANN ±	1.21	0.040	1.58

manual cuts

 χ^{2}_{Vertex} <3, χ^{2}_{STS} <3, χ^{2}_{MUCH} <3 STS>6, MUCH>9, TRD σ_{TOF} =3

$\frac{\omega + central Au + Au @ 8 A GeV/c}{(for same efficiency)}$

14

ω + Au+Au @ 12 A GeV/c

Robustness of ANN

- ANN was trained using for UrQMD+PLUTO+GEANT3
- The output weights were used for DCMQGSM-SMM+PLUTO+GEANT4

ANN cuts	ε _ω %	ω background ratio	norm. significance
from training of DCMQGSM-SMM with G4	1.0	0.018	1
from training of UrQMD with G3	1.0	0.018	0.98

reconstructed background using the same set of manual cuts

ANN for physics performance

Simulation input for Au+Au @ 8 AGeV/c

Dimuon signals – PLUTO

- empirical angular-distribution parametrizations for selected processes
- resonance excitation in hadronic interactions
- nucleon-nucleon elastic scattering
- Multiplicities from Thermal-FIST and UrQMD

- Background UrQMD
 - low and intermediate energies (Vs<5 GeV): the interactions between known hadrons and their resonances
 - high energies (Vs>5 GeV): excitation of colour strings and their subsequent fragmentation into hadrons

Reconstruction steps

- CBM setup with thick absorber for measurements of intermediate and high dimuon mass regions
- Track, momentum and vertex reconstruction in STS
- Track extrapolation through MUCH and TRD up to TOF
- $\hfill Selection of the <math display="inline">\mu\hfill -track$ candidates using ANN training for MUCH with thick (1m) absorber

Low and intermediate mass region

central Au+Au @ 8 AGeV/c with dimuon signals

invariant mass

signal-to-background ratio

J/ψ results

central Au+Au @ 8 AGeV/c

invariant mass

Sub-threshold charm production in nuclear collisions J. Steinheimer, A. Botvina, M. Bleicher, arXiv:1605.03439

efficiency

PLUTO input

reconstructed J/ ψ

20

Conclusions

- ANN was successful used for optimization of the selection cuts for muon analysis.
- ANN selection gives 3 times better ω-to-background ratio and 60% better significance for the same ω reconstruction efficiency as with manual set of cuts.
- The set of weights produced using ANN for simulation setup UrQMD+PLUTO+GEANT3 was tested for DCMQGSM-SMM+PLUTO+GEANT4. The results are comparable.

Next steps Input update PLUTO DCMQGSM-SMM GEANT4

Signal reconstruction via background subtraction

Multi-differential analysis

without selection

manual cuts

78

23456

0

1

10²

9 10

 χ^2_{STS}

1 2 3 4 5 6

ANN PID

background

Selection of μ^+_{ω}

manual cut from fit

cut from ANN

Track reconstruction

- STS track reconstruction (general for all physics cases). The π -mass hypothesis (m_{π} = 139.57018(35) MeV/c²) will be used for:
 - track finder procedure;
 - momentum reconstruction;
 - primary vertex reconstruction.
- Extrapolation of the STS reconstructed tracks through downstream detectors (MUCH, TRD, TOF). The μ -mass hypothesis (m_{μ} = 105.6583755(23) MeV/c²) will be used for calculation of energy loss of particles in thick materials (absorbers in MUCH), see Bethe-Bloch equation.
- The primary tracks passing through all detector subsystems will be selected as muon track candidates.

