PROBING VERY WEAKLY COUPLED DARK MATTER WITH GWS

SABIR RAMAZANOV (CEICO, PRAGUE)

In collaboration with E. Babichev, D. Gorbunov, W. Emond, R. Samanta, A. Vikman

10TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS

25 AUGUST

MECHANISMS OF DARK MATTER PRODUCTION

- Freeze-out: Dark Matter couplings to thermal bath are large enough to maintain early time thermal equilibrium.
- Freeze-in: feebly coupled Dark Matter. No equilibrium at any time. Out-of-equilibrium scatterings of particles in the primordial plasma into DM particles are sufficient to populate DM phase space.

McDonald'02, Hall et al'10

MECHANISMS OF DARK MATTER PRODUCTION

- Freeze-out: Dark Matter couplings to thermal bath are large enough to maintain early time thermal equilibrium.
- Freeze-in: feebly coupled Dark Matter. No equilibrium at any time. Out-of-equilibrium scatterings of particles in the primordial plasma into DM particles are sufficient to populate DM phase space.

McDonald'02, Hall et al'10

In the present talk: Dark Matter production through inverse phase transition.

Couplings are so weak that out-of-equilibrium scatterings are insufficient (beyond freeze-in).

Earlier discussions of inverse phase transitions: S. Weinberg'74, Dodelson and Widrow'90.

SCALAR PORTAL COUPLING

$$\mathcal{L} = \frac{(\partial_\mu \chi)^2}{2} - \frac{\mathsf{M}^2 \cdot \chi^2}{2} - \frac{\lambda \cdot \chi^4}{4} + \frac{g^2 \chi^2 \phi^\dagger \phi}{2} \; .$$

 χ is Dark Matter field Z₂-symmetry protects stability

Assume that ϕ is in thermal equilibrium with hot plasma. Could be Higgs field.

SCALAR PORTAL COUPLING

$$\mathcal{L} = \frac{(\partial_\mu \chi)^2}{2} - \frac{\mathsf{M}^2 \cdot \chi^2}{2} - \frac{\lambda \cdot \chi^4}{4} + \frac{g^2 \chi^2 \phi^\dagger \phi}{2} \; .$$

 χ is Dark Matter field Z_2 -symmetry protects stability

Assume that ϕ is in thermal equilibrium with hot plasma. Could be Higgs field.

- $|g^2| \simeq 0.1 10^{-8} \Longrightarrow \text{freeze-out}$
- $|g^2|\simeq$ 10 $^{-11}\Longrightarrow$ freeze-in Chu, Hambye, Tytgat'11, Yaguna'11, Lebedev and Toma'19
- lacksquare 0 < $g^2\lesssim$ 10⁻¹¹ \Longrightarrow second order inverse phase transition

IS THERE A LIFE BEYOND FREEZE-IN?

 $eta \equiv rac{\lambda}{g^4} > rac{1}{\lambda_\phi}$

S. R., Babichev, Gorbunov, Vikman'21

$$\langle \phi^\dagger \phi
angle_{\mathsf{T}} = rac{\mathsf{N} \mathsf{T}^2}{\mathsf{12}}$$

$$\begin{split} \langle \phi^\dagger \phi \rangle_T &= \frac{\text{NT}^2}{\text{12}} \\ V_{\textit{eff}} &= \frac{\text{M}^2 \cdot \chi^2}{\text{2}} + \frac{\lambda \cdot \chi^4}{\text{4}} - \frac{\text{Ng}^2 \text{T}^2 \chi^2}{\text{24}} \end{split}$$

$$\langle \phi^{\dagger} \phi \rangle_{\mathsf{T}} = \frac{\mathsf{N}\mathsf{T}^2}{\mathsf{12}}$$

$$V_{eff} = \frac{M^2 \cdot \chi^2}{2} + \frac{\lambda \cdot \chi^4}{4} - \frac{Ng^2T^2\chi^2}{24}$$

$$T^2(t) \propto \frac{1}{a^2(t)}$$

Large T at early times \Longrightarrow spontaneous breaking of Z_2 -symmetry

$$\langle \chi \rangle = \sqrt{\frac{\mathsf{N}g^2\mathsf{T}^2}{\mathsf{12}\lambda} - \frac{\mathsf{M}^2}{\lambda}}$$

$$g^2T^2\ll M^2$$
 at late times \Longrightarrow symmetry is restored $\langle\chi\rangle=0$

$$rac{d\langle\chi
angle}{dt} \propto rac{1}{\sqrt{Ng^2T^2/12-M^2}}
ightarrow \infty \qquad ext{as} \qquad rac{Ng^2T^2}{12}
ightarrow M^2$$

Digression: DM production at inverse phase transition is generic.

$$V_{\textit{eff}} = \frac{\textit{M}^2\chi^2}{2} + \frac{\lambda\chi^4}{4} - \frac{\mu^2(t)\chi^2}{2}$$

$$\mu^2(t) \propto \frac{1}{a^n(t)}$$
 $\mu^2(t) \propto T^2(t), R, \mathbf{B}^2 \dots$

E. Babichev, D. Gorbunov, S. R.'20 S. R., F. Urban, A. Vikman'20

o

DARK MATTER OSCILLATIONS

$$au_* \equiv M t_* = rac{M}{2 H_*} \gg 1$$

$$extstyle M \simeq$$
 15 eV $\cdot rac{eta^{3/5}}{\sqrt{N}} \cdot \left(rac{g_*(extstyle T_*)}{ extstyle 100}
ight)^{2/5} \cdot \left(rac{g}{ extstyle 10^{-8}}
ight)^{7/5} \qquad eta \equiv rac{\lambda}{g^4}$

IS THERE A LIFE BEYOND FREEZE-IN?

$$\beta \equiv \frac{\lambda}{g^4} > \frac{\mathrm{1}}{\lambda_\phi}$$

Spontaneous breaking of Z_2 -symmetry \Longrightarrow domain wall formation in the early Universe.

$$|M_{eff}| = rac{N^{1/2}gT_i}{\sqrt{12}} \simeq H(T_i) \Longrightarrow T_i \simeq \sqrt{rac{100}{g_*(T_i)}} \cdot rac{N^{1/2}gM_{Pl}}{10}$$

9 | 1

DOMAIN WALLS ARE MELTING

Domain walls are harmless, because their tension decreases as the cube of the temperature.

$$\sigma_{wall} \propto \sqrt{\lambda} \langle \chi
angle^3 \propto T^3$$

$$ho_{wall} \simeq \sigma_{wall} H \propto T^5 \qquad rac{
ho_{wall}}{
ho_{rad}} \propto T(t) \propto rac{1}{a(t)}$$

Domain walls vanish completely at the inverse phase transition.

DOMAIN WALLS ARE MELTING

Domain walls are harmless, because their tension decreases as the cube of the temperature.

$$\sigma_{wall} \propto \sqrt{\lambda} \langle \chi
angle^3 \propto T^3$$
 $ho_{wall} \simeq \sigma_{wall} H \propto T^5 \qquad rac{
ho_{wall}}{
ho_{rad}} \propto T(t) \propto rac{1}{a(t)}$

Domain walls vanish completely at the inverse phase transition.

NB Constant tension domain walls: $\rho_{wall} \simeq \sigma_{wall} H \propto T^2$

$$rac{
ho_{wall}}{
ho_{rad}} \propto rac{1}{T^2(t)} \propto a^2(t)$$

MORE WEAKLY COUPLED MEANS MORE VISIBLE!

Domain walls emit gravitational waves! See the analysis in Hiramatsu, Kawasaki, Saikawa'2013

$$ho_{gw} \simeq rac{\sigma_{wall}^2(t)}{M_{Pl}^2} \qquad F_{gw} \simeq H(t)$$

More weakly coupled means more visible!

Domain walls emit gravitational waves! See the analysis in Hiramatsu, Kawasaki, Saikawa'2013

$$\begin{split} \rho_{gw} &\simeq \frac{\sigma_{wall}^2(t)}{M_{Pl}^2} \qquad F_{gw} \simeq \textit{H}(t) \\ f_{gw} &\simeq 60 \; \text{Hz} \cdot \textit{N}^{1/2} \cdot \left(\frac{g}{10^{-8}}\right) \cdot \left(\frac{100}{g_*(T)}\right)^{1/3} \\ \Omega_{gw} \cdot h^2(t_o) &\approx \frac{4 \cdot 10^{-14} \cdot \textit{N}^4}{\beta^2} \cdot \left(\frac{100}{g_*(T)}\right)^{7/3} \\ &\quad \text{Vanilla region:} \\ \beta &\equiv \frac{\lambda}{g^4} \simeq 1 \qquad \textit{N} \gg 1 \end{split}$$

GRAVITATIONAL WAVES

gwplotter.com Moore, Cole, and Berry'14

Z_2 -symmetry $\rightarrow U(1)$ -symmetry

$$\mathcal{L} = -\frac{1}{4} \mathit{F}_{\mu\nu}^2 + |\mathit{D}_{\mu}\chi|^2 - \mathit{M}^2 \cdot |\chi|^2 - \frac{1}{4} \lambda \cdot |\chi|^4 + \frac{1}{2} \mathit{g}^2 |\chi|^2 |\phi|^2 \; .$$

Melting domain walls → melting cosmic strings

Emond, S. R., Samanta'21

$$\mu \propto \langle \chi \rangle^{\rm 2} \propto {\rm T^2}$$

Existing limits on $G\mu$ assuming constant string tension μ are not applicable!!

Main phenomenology is due to GWs.

EVOLUTION OF COSMIC STRINGS

GWs emitted by the loops are defined by the number density of the string loops.

Approximate scale-invariance of the model

dynamics of melting cosmic strings in the radiation-dominated Universe is equivalent to the dynamics of cosmic strings with a constant tension in the flat spacetime.

Vanchurin, Olum, Vilenkin'05

Number density of loops in the flat spacetime:

$$n(t,l) = \frac{1}{l^4} \int_{l/t}^{l/t_s} dx' x'^3 f(x')$$

In the one-scale approach

Kibble'85

$$f(x) = C\delta(x - \alpha)$$
 $C \approx 150$ $\alpha \approx 0.1$

$$P_{gw}^{(j)}(l,F) \approx \frac{\Gamma G \mu^2(t)}{\zeta\left(\frac{4}{3},\infty\right)} \cdot \frac{1}{j^{4/3}} \cdot \delta\left(F - \frac{2j}{l(t)}\right)$$

Vachaspati and Vilenkin'84

One can define $\Omega_{gw}h_0^2$

GRAVITATIONAL WAVES FROM MELTING COSMIC STRINGS

Low-frequency range: $\Omega_{gw}\cdot h_0^2\propto f^4$

High frequency range: $\Omega_{qw} \cdot h_0^2 \propto f^{-1/3}$

SUMMARY

- Thermal fluctuations of hot primordial plasma can lead to abundant Dark Matter production even for extremely weak coupling constants $g^2 \ll 10^{-11}$.
- Weak couplings can be tested through GWs emitted by domain walls or cosmic strings. The peak frequency is pinned to the constant g, i.e., $f_{qw} \propto g$.
- Domain walls are melting and do not overclose the Universe.
- Spectrum of GWs has been estimated for the case of melting cosmic strings.

Thanks for listening!!! $Ev\chi\alpha\rho\iota\sigma\tau\omega$