Monte Carlo Simulations of Upsilon Meson Production

Jaroslav Bielčík Jakub Češka Leszek Kosarzewski Miroslav Myška

FJFI ČVUT

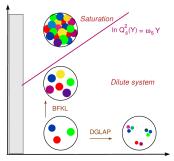
10th International Conference on New Frontiers in Physics Kolymbari, Crete, Greece 23 August to 2 September 2021

Motivation

Upsilon mesons are a probe of quark-gluon plasma (QGP) created in heavy-ion collisions. The measured suppression of Upsilon yield in A+A over p+p is caused by:

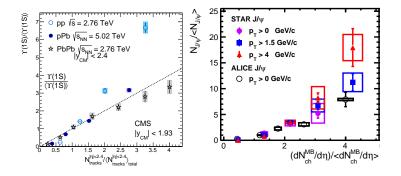
- Debeye-like colour screening of diquark potential at high temperatures reached in QGP [*Phys. Rev. Lett.* **109** (2012), 222301]
- cold nuclear matter effects, such as shadowing, comover interaction or nuclear absorption [*Phys. Lett. B* **503** (2001), 104-112]
- feed-down contributions

In order to better understand the suppression of Υ mesons in QGP, it is essential to know their production mechanism, which consists of:


- hard scattering $b\bar{b}$ production
- bound state formation colour singlet, colour octet channels

Υ multiplicity dependence

The multiplicity dependence of Υ production is sensitive to:


- interplay between soft and hard processes [Phys. Rev. C 86, 034903]

 - ► *N*_{ch} proportional to the energy density
- multiple parton interaction (MPI) influence

- possible parton saturation signatures (implemented in CGC/saturation based model) [*Eur. Phys. J. C* **80**,560 (2020)]
- string percolation model [Phys. Rev. C 86, 034903]

Υ multiplicity dependence

- CMS (left): strong Υ production dependence on charged particle multiplicity in pp @ $\sqrt{s} = 2.76$ TeV [JHEP 04 (2014), 103]
- STAR (right): similar trend for J/ Ψ in pp @ $\sqrt{s} = 200$ GeV [Phys. Lett. B **786** (2018), 87-93]

Normalised multiplicity dependence

Experimental observable $\textit{N}_{\Upsilon}/\left<\textit{N}_{\Upsilon}\right>$ defined as:

$$N_{\Upsilon}/\left< N_{\Upsilon} \right> = (N_{
m MB}/N_{
m MB}^{
m bin})(N_{\Upsilon}^{
m bin}/N_{\Upsilon})$$

 $\textit{N}_{\rm ch}/\left<\textit{N}_{\rm ch}\right>\ldots$ self-normalised particle multiplicity

 $\textit{N}_{\Upsilon}\ldots$ total number of events containing Upsilon meson

 $\textit{N}^{\rm bin}_{\Upsilon}\ldots$ number of Upsilon events in corresponding multiplicity bin

 $N_{
m MB}\ldots$ total number of minimum bias (MB) events

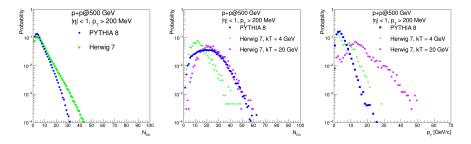
 $N_{
m MB}^{
m bin}\dots$ number of MB events in corresponding $N_{
m ch}/\left< N_{
m ch} \right>$ bin

(1)

Mote Carlo event generators

PYTHIA

- *p*_T ordered showers
- Lund string hadronisation
- direct Upsilon production (matrix elements for Bottomonia)

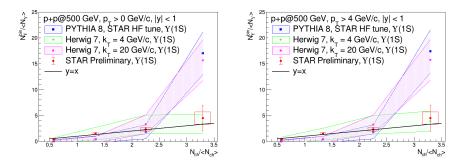

Herwig

- angular ordered showers
- cluster hadronisation
- Upsilon production during hadronisation (*bb* matrix element)

Simulation setup

- PYTHIA and Herwig simulations of pp collisions at 500 GeV
- Minimum bias: non-single-diffractive SoftQCD
- Track selection: $|\eta| < 1$, $p_T > 0.2$ GeV/c, stable ($\tau > 10$ mm/c) (STAR acceptance)
- Upsilon selection: $p_T > 0$ or 4 GeV/c, electron decay channel only, require both electrons within acceptance
- Directly produced Upsilon(1S) no feed-down contribution
- Herwig production depends on b-parton k_{\perp} cut (4 or 20 GeV/c) lower values result in spoiling track multiplicity while improving the description of Upsilon $p_{\rm T}$ spectrum shape
- Comparison to STAR preliminary data [J. Phys.: Conf. Ser. 1667 012022]

Spectra



- multiplicity distributions for MB (left) and Upsilon(1S) (middle) events and p_T distributions for Upsilon events (right)
 - ▶ Upsilon N_{ch} spectra PYTHIA and Herwig with $k_{\perp} = 20$ GeV/c have a similar shape
 - ▶ Upsilon p_T spectra PYTHIA and Herwig with k_⊥ = 4 GeV/c agree more closely

• Normalised event multiplicity of Upsilon yield calculated using (1)

• $N_{\rm ch}/\langle N_{\rm ch}\rangle$ binning selected in order to match the binning of STAR preliminary data: 0-1, 1-2, 2-3, 3-8 and 8-100 (overflow bin)

Results

- normalised Upsilon(1S) yield dependence on normalised multiplicity for PYTHIA and Herwig compared to STAR preliminary data [J. Phys.: Conf. Ser. 1667 012022]
 - left: p_T integrated
 - right: $p_{\rm T} > 4 \text{ GeV/c}$

Conclusion

- The minimum bias spectra differ significantly for PYTHIA and Herwig at higher multiplicities
- Upsilon production in Herwig has limited validity
- Both PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$) predict stronger than linear increase in normalised Upsilon yield in dependence on normalised multiplicity
- In comparison to STAR preliminary data both PYTHIA and Herwig (k_⊥ = 20 GeV/c) predict higher values for larger multiplicities, while underestimating smaller multiplicity values
- The data suggests, that Upsilon mesons are produced in multi-parton collisions, due to stronger than linear increase predicted by PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$) [JHEP **09** (2015), 148]

Acknowledgements

The work was supported from the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic and from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Backup

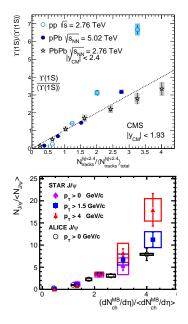
This is a short version of the poster used for a brief presentation

Monte Carlo Simulations of Upsilon Meson Production

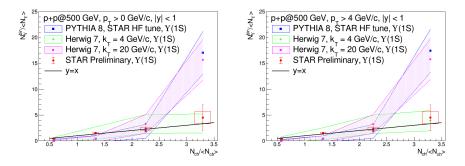
Jaroslav Bielčík Jakub Češka Leszek Kosarzewski Miroslav Myška

FJFI ČVUT

10th International Conference on New Frontiers in Physics Kolymbari, Crete, Greece 23 August to 2 September 2021


Motivation

Production mechanism:


- hard scattering $b\bar{b}$ production
- bound state formation colour singlet, colour octet channels

Sensitive to:

- interplay of soft and hard processes
- multiple parton interaction
- parton saturation signatures Study of:
 - Normalised Upsilon yield $N_{\Upsilon} / \langle N_{\Upsilon} \rangle$ in dependence on self-normalised event multiplicity $N_{\rm ch} / \langle N_{\rm ch} \rangle$
- [S. Chatrchyan et al. [CMS], JHEP 04 (2014), 103],
- [J. Adam, et al. [STAR], Phys. Lett. B 786 (2018), 87-93] J. Češka (FJFI ČVUT) Upsilon production study

Results: Upsilon vs $N_{ch}/\langle N_{ch} \rangle$

Both PYTHIA and Herwig with $k_{\perp} = 20$ GeV/c describe a stronger than linear increase in in normalised Upsilon yield dependence on normalised charged particle multiplicity. Herwig with $k_{\perp} = 4$ GeV/c predicts a closer to linear development in higher multiplicities. STAR preliminary data taken from:

[L. Kosarzewski [STAR]: Overview of quarkonium production studies in the STAR experiment, Presented at FAIRness 2019]

J. Češka (FJFI ČVUT)

Conclusion

- The minimum bias spectra differ significantly for PYTHIA and Herwig in larger multiplicities
- Upsilon production in Herwig has limited validity
- Both PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$) predict stronger than linear increase in normalised Upsilon yield in dependence on normalised multiplicity
- In comparison to STAR preliminary data both PYTHIA and Herwig (k_⊥ = 20 GeV/c) predict higher values for larger multiplicities, while underestimating smaller multiplicity values
- The data suggests, that Upsilon mesons are produced in multi-parton collisions, due to stronger than linear increase predicted by PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$)

Acknowledgements

The work was supported from the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic and from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

