

Contribution ID: 151 Type: Talk

# Laser spectroscopy studies of long-lived pionic helium atoms

Thursday, 7 October 2021 17:35 (25 minutes)

The PiHe collaboration of the Paul Scherrer Institute (PSI) have carried out laser spectroscopy of long-lived three-body pionic helium atoms made of a  $^4$ He nucleus, an electron, and a negative pion. Sub-nanosecond laser pulses excited a transition between a pionic state of principal and orbital angular momentum quantum number combinations  $(n,\ell)=(17,16){\to}(17,15)$ . This may lead to future studies of the properties of pions and other mesons using quantum optics techniques, as well as precision quantum electrodynamics (QED) studies of a boson-boson atomic system. This research is complementary to our experiments on metastable antiprotonic helium atoms carried out by the ASACUSA collaboration of CERN to study the properties of a fundamental hadron-antihadron atom.

- [1] M. Hori, A. Sótér, V.I. Korobov, Phys. Rev. A 89, 042515 (2014).
- [1] M. Hori, H. Aghai-Khozani, A. Sótér, A. Dax and D. Barna, Nature 581, 37 (2020).

## Is this abstract from experiment?

Yes

# Name of experiment and experimental site

PiHe and ASACUSA

## Is the speaker for that presentation defined?

Yes

### **Details**

Masaki Hori Max Planck Institute of Quantum Optics

#### Internet talk

Yes

**Primary authors:** DAX, Andreas Josef (Department of Physics Particle Physics); HORI, Masaki (Max-Planck Institute of Quantum Optics (DE)); SOTER, Anna (ETH Zürich); BARNA, Daniel (Wigner Research Centre for Physics); AGHAI KHOZANI, Hossein (Max-Planck-Gesellschaft (DE))

Presenter: HORI, Masaki (Max-Planck Institute of Quantum Optics (DE))

 $\textbf{Session Classification:} \ \ \textbf{Interdisciplinary session}$