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Outline

« The Solenoid Tracker At RHIC (STAR)

« Heavy-flavour quarks as a probe of QGP

o Dataset and topological properties of DO mesons
« Random forests

« Boosted decision trees

e Deep neural network

« Comparison of trained algorithms
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The Solenoid Tracker At RHIC (STAR)

o Designed to study the strongly interacting matter
o EXcels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage

« Most of the subsystems are immersed in 0.5 T solenoidal magnetic field

Time Projection Chamber (TPC)

< - Main tracking device; momentum determination
// 4 - Particle identification via specific energy loss dE/dx
' ,'{/ y |
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"\ Time of Flight (TOF)
.f - Particle identification at low transverse momentum

pTVia velocity [3
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The Solenoid Tracker At RHIC (STAR)

o Designed to study the strongly interacting matter
o EXcels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage

« Most of the subsystems are immersed in 0.5 T solenoidal magnetic field

£ //-7-
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S gy = Heavy Flavor Tracker (HFT)
- Inner tracking system
D - Excellent DCA,., and DCA,
) resolution: &50 um for
, PXL kaons at PT = 750 MeV/c
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Heavy-flavour quarks as a probe of QGP

« Heavy-flavour quarks possess large masses
- they are produced primarily at the initial stages of heavy-ion collisions
- they experience the evolution of the collision

« Charm quarks are confined in hadrons, that due their lifetimes could not be observed
directly in the detector

« Open charm hadrons could be studied via hadronic decays: Do(ﬁ) — K+ (K )

o Our goalis to reconstruct D% meson in order to study cold nuclear matter effects in
asymmetric d+Au collisions at vVsnn= 200 GeV
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Motivation

Goal is to compare performance of the various machine learning methods
(and packages) for finding D° signal

« BDT - Boosted Decision Trees (TMVA, ROOT)!
Widely used, since implemented within ROOT package

« RF - Random forest (scikit-learn, Python)2
Robust and interpretable, one of the most popular supervised machine learning methods, fast to train and

simple to optimize

« DNN - Deep neural network (Keras, Python)3
The most complex machine learning method tested in this study.
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Dataset

o HIJING full-event simulation of 2016 d+Au collisions at Vsnn= 200 GeV
- official STAR's embedding to zerobias collisions
- at least one DY meson decayed to K and 11 in the event
- events with primary vertex [Vz|I< 6 cm

« DO = K1 decay channel is studied
- pairs of kaons and pions are reconstructed in the same way as in the data
- correct charge pairs are used for studies

« Track selection
- HFT tracks
- At least 15 space points in the TPC for track reconstruction
- p1> 0.15 GeV/c
- Track pseudorapidity Inl<1
- TPC particle identification via dE/dx: pions: InGpionl < 3, kaons: INOkaonl < 2
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Topological reconstruction of D® mesons

« JTopological properties of DO decays used for their reconstruction:
1}
/ ?

DCA = distance of closest approach S

. K
PV = primary vertex, place of the d+Au PV
collision Q o =

SV = secondary vertex, place of the DO
meson decay

« cosine of angle { between DO

. DCAgaughters between kaon momentum and kaon mo-
and pion tracks mentum

- ideally — O um

« decay length:
- distance between primary
vertex (PV) and secondary

o DCApQo of D9 meson to PV
vertex (SV) of DO meson

candidate
- ideally &~ 200 um
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cosine of angle ¢ between DO
momentum and decay length
vector

- ideally — O um

DCAk, 17 of kaon and pion to PV
- ideally >>0 um



Distribution of topological variables
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Correct and wrong charge combination
pairs have nearly similar distributions
which makes DO separation challenging

DO signal shape is as we expect from
topological properties of the decay



Data pre-processing

o Each reconstructed correct-charge Kmr pair is associated to the tracks in the HIJING simulation

« Those coming from the real DO meson in the simulation are used as signal sample in the classification training,
other correct-charge pairs are considered to be the background

o For the testing phase of the methods, combined signal and background correct-charge pairs are used

e All of the methods are independently trained and tested in the five DO meson transverse momentum proo
intervals

Variable Min. Max.

e prpoointervals for training: 0-1, 1-2, 2-3, 3-5 and 5-8 GeV/c

DCAy  [mm] 0.002 2.0

o For ML training, datasets with and without :
precuts were tested DCAdaughters [mm] 00 02

All presented models were trained and 0005 = 20
evaluated over balanced dataset: decay length [mm] { °© R S

number of signal samples ~ number of DCApQ [mm] 00 05
background samples B e
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Random forest

« Random forest (RF):
- scikit-learn package used
- Machine learning algorithm built with ensemble of independent trees trained using bagging (bootstrap aggregating)

- Parameters may be optimized during the training:
- maximum depth of trees
- number of trees within ensemble
- function used to measure quality of split of samples within tree’s node (impurity measure)

« Hyper-parameter space for RF optimization:
- maximum depth of trees dmgyx: {5, 7, 10, 12, 15, 17, 20}
- number of trees Nireeg: {200, 400, 600, 800, 1000, 1200}
- impurity measure: {Gini, Entropy}
o Dataset split:
- 60% of the samples used for training and hyper-parameter optimization (grid search) using 3-fold cross-validation
- 40% of the samples used for classifier evaluation

Optimized parameters of random forest classifier

With precuts Wrtnout precuts
poofGevi] | o1 12 23 35 58 | o1 12 23 35 58
dmax 101312107 151512127
Nirees 1200 600 1000 . 200 200 | 1200 600 = 1000 = 1200 = 200
FACULTY OF Impurity measure Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy
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Boosted decision trees

« Boosted decision trees (BDT):
- TMVA package used
- Ensemble of shallow trees linked together using boosting algorithm (AdaBoost)
- Training of individual trees is not independent, data misclassified by a tree have higher weight in the training of
the next tree (class weights are balanced using weights coming from classification error fraction)

« Error fraction:
- Calculated as how much signal events have positive BDT response (defined in [-1,1] range) and vice-versa for the
background
- Error fraction is getting higher with increasing Nt eeg and converges

- The trees with error fraction close to 0.5 are very weak classifiers

0.50
« BDT parameters: 020 | od AR e
- Nirees : selected as 500 (based on error 0.6 ol
fraction convergence) 5 0.44 -
- Impurity measure: Gini g 042k
- maximum tree depth dmax: 3 S 0.40 f
- bagging is applied to minimize overtraining L] 0.38
0.36[ - Error fraction for tree
0.34 f e SMA for last 50 trained trees
mjccl:.léwnos':cmncss 0 100 200 300 400 500 600 700 800 900
AND PHYSICAL Tree number
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Deep neural network

- Keras package used

s - Input layer of 7neurons . _ g harvised machine learning algorithm able to perform non-linear
transformation of input space

Hidden layers, - May address complex classification problems more effectively
// neurons, when optimized properly
BN, @, dropout(p)
- Requires large amount of CPU time, computational power and
training data
. Output layer of 1 neuron,

a = sigmoid - Feature-wise standardization was applied to topological variables

Hyper-parameter space for deep neural network setup optimization

Init. Learning rate
[-107]

Neurons in hidden

Parameter Activation a
i layer w

Dropout rate p Optimizer Kernel init. éBatch sizeé

Options Tanh 0.5 0.3 Descent

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
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Deep neural network

o Dataset split:

- training data: 40% of the samples used for training and hyper-parameter optimization (pre-training 70 epochs)

- validation data: 20% of the samples used to evaluate the pre-trained models (selection of best hyper-parameters
combination)

- training data are then used again to train model with optimized hyper-parameters, training is stopped with
EarlyStopping rule only (validation ACC was not improved during last 60 epochs)

- test data: 20% of the samples used to evaluate the final model

Optimized parameters of deep neural network

With precuts Without precut

pwfGeVi] | o1 | 12 . 23 35 58 | o1 | 12 | 23 . 35 58
Activatona | RelU RelU ~ RelU ~ RelU ~ RelU | RelU ~ RelU ~ RelU ~ RelU  tanh
Init. Learning rate [-10%] | (. [ . I [ . (R . [ T
Dropoutratep | 02 02 02 02 02 | 02 . 02 02 02 . 02
Optimizer |~ Adam  Adam  Adem  Adam  Adam | Adam = Adam  Adam  Adam  Adam
Kernelinit. L HeNorma'HeU”'formLeCU”U”'fLeCU”U”'fLeCU”U”'f ______ HeNorma'LeCU“U”'fLeCU”U”'fLeCU”U”'fLeCU“U”'f
Batchsize | e4 e4 e4 &4 64 | 64 B4 B4 B4 B4
Neurons in hidden layer w 256 . 256 256 256 . 256 256 | 256 256 256 | 257
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Evaluation of receiver operating characteristics over test set

o Classification ability increases with

1.0
higher ptpo
$0.8
< o« For prpo <5 GeV/c, classifiers trained
£ 0.6 over the data after preselection
% criteria (cuts) application achieve
0.4 . .
5 higher AUC values as those trained
0.2 without their application.
- 0 < pr.po < 1 GeVic 1 < pr.po < 2 GeV/c 2=proo=3Gevic | o RF classification has significantly
better performance than other
1.0
methods
$0.8
(-
-8 Area under receiver operating characteristic curve (AUC)
U= Q.0 Il LI g
O With precuts Without precuts
© T N e [ S R I
c 04 proo [GeV/c] 01 12 {23 34 45| 01 12 23 i 34 | 45
n s s 5 s s s s 5
0.2 RF 0.81 | 0.87 { 0.94 | 0.95 096 | 073 | 079 | 0.82 | 0.90 | 0.94
3 < pr.oo < 5 GeV/c 5 < pr.oo < 8 GeV/c BDT 078 084 | 090 093 : 093|070 | 076 | 083 | 089 094
0-%.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Cmmmmmmmm—— A AU R A o A
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Conclusion

o Various machine learning methods (RF, BDT, DNN) were compared in order to obtain efficient
classifier for finding signal in two-body decay of DY meson

e HIJING full-event simulation of 2016 d+Au collisions at +/snn= 200 GeV was used to study DO = K 1
decay channel

e light cut preselection and the option with no preselection criteria was applied to topological
variables

« Despite the fact, that RF method is not common in high-energy physics, it shows notable
enhancement of signal efficiency compared to the other presented methods.

« DNN in presented setup does not show significant improvement compared to the widely used BDT.

- However, their performance is close and the DNN might help to improve signal significance in similar analyses
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Signal and background efficiencies vs.
reconstructed transverse momentum of KT pairs
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