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Outline

• The Solenoid Tracker At RHIC (STAR)


• Heavy-flavour quarks as a probe of QGP


• Dataset and topological properties of D0 mesons


• Random forests


• Boosted decision trees


• Deep neural network


• Comparison of trained algorithms 
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The Solenoid Tracker At RHIC (STAR)
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• Designed to study the strongly interacting matter


• Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage 


• Most of the subsystems are immersed in 0.5 T solenoidal magnetic field
Time Projection Chamber (TPC) 
- Main tracking device; momentum determination

- Particle identification via specific energy loss dE/dx 


Time of Flight (TOF)

- Particle identification at low transverse momentum 
pT via velocity β

 




The Solenoid Tracker At RHIC (STAR)
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• Designed to study the strongly interacting matter


• Excels in tracking and identification of charged particles at mid-rapidity with full azimuthal coverage


• Most of the subsystems are immersed in 0.5 T solenoidal magnetic field

Heavy Flavor Tracker (HFT) 
 
- Inner tracking system 

- Excellent  and   

  resolution: 50 μm for   

  kaons at pT = 750 MeV/c


DCAxy DCAz
≈



• Heavy-flavour quarks possess large masses 
- they are produced primarily at the initial stages of heavy-ion collisions 
- they experience the evolution of the collision


• Charm quarks are confined in hadrons, that due their lifetimes could not be observed 
directly in the detector


• Open charm hadrons could be studied via hadronic decays:


• Our goal is to reconstruct D0 meson in order to study cold nuclear matter effects in 
asymmetric d+Au collisions at √sNN = 200 GeV

Heavy-flavour quarks as a probe of QGP
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D0(D0) → K−π+(K+π−)



Motivation

• BDT - Boosted Decision Trees (TMVA, ROOT)1 

Widely used, since implemented within ROOT package


• RF - Random forest (scikit-learn, Python)2 
Robust and interpretable, one of the most popular supervised machine learning methods, fast to train and 
simple to optimize


• DNN - Deep neural network (Keras, Python)3 
The most complex machine learning method tested in this study.

Goal is to compare performance of the various machine learning methods 
(and packages) for finding D0 signal
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1H. Voss, A. Hocker, J. Stelzer and F. Tegenfeldt, TMVA, the Toolkit for Multivariate Data Analysis with ROOT, PoS ACAT (2007) 040. 
2F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel et al., Scikit-learn: Machine learning in python, J. Mach. 
Learn. Res. 12 (2011) 2825–2830. 
3F. Chollet et al., “Keras.” https://keras.io, 2015



Dataset
• HIJING full-event simulation of 2016 d+Au collisions at √sNN = 200 GeV 

- official STAR's embedding to zerobias collisions  
- at least one D0 meson decayed to K and π in the event 
- events with primary vertex |Vz|< 6 cm


• D0 → K π decay channel is studied  
- pairs of kaons and pions are reconstructed in the same way as in the data 
- correct charge pairs are used for studies


• Track selection 
- HFT tracks 
- At least 15 space points in the TPC for track reconstruction 
- pT > 0.15 GeV/c 
- Track pseudorapidity |η|< 1 
- TPC particle identification via dE/dx: pions: |nσpion| < 3 , kaons: |nσkaon| < 2
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• Topological properties of D0 decays used for their reconstruction:

Topological reconstruction of D0 mesons
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decay length

DCAπ

PV

DCAD0 DCAdaughters
DCAK

ζ
K

π

pKπSV
θ

DCA = distance of closest approach 
 
PV = primary vertex, place of the d+Au 
collision 
 
SV = secondary vertex, place of the D0 
meson decay

• decay length:  
- distance between primary 
vertex (PV) and secondary 
ver tex (SV) o f D0 meson 
candidate 
- ideally  200 μm


•  between kaon 
and pion tracks 
- ideally   0 μm


• cosine of angle  between D0 
momentum and decay length 
vector


• cosine of angle  between D0  
momentum and kaon mo-
mentum


•  of D0 meson to PV 
- ideally   0 μm


•  of kaon and pion to PV 
- ideally  >> 0 μm

≈

DCAdaughters

→

θ

ζ

DCAD0
→

DCAK, π



Distribution of topological variables
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• Correct and wrong charge combination 
pairs have nearly similar distributions 
which makes  D0  separation challenging


• D0 signal shape is as we expect from 
topological properties of the decay



Data pre-processing
• Each reconstructed correct-charge Kπ pair is associated to the tracks in the HIJING simulation 


• Those coming from the real D0 meson in the simulation are used as signal sample in the classification training, 
other correct-charge pairs are considered to be the background


• For the testing phase of the methods, combined signal and background correct-charge pairs are used


• All of the methods are independently trained and tested in the five D0 meson transverse momentum pT,D0 
intervals


• pT,D0 intervals for training: 0–1, 1–2, 2–3, 3–5 and 5–8 GeV/c


• For ML training, datasets with and without  
precuts were tested
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Variable Min. Max.

0.002 2.0

0.0 0.2

0.005 2.0

0.0 0.5

0.7 1.0

DCAdaughters [mm]

DCAK,π [mm]

decay length [mm]

DCAD0 [mm]

cos θ

All presented models were trained and 
evaluated over balanced dataset:


number of signal samples  number of 
background samples

≈



Random forest
• Random forest (RF):  

- scikit-learn package used 
- Machine learning algorithm built with ensemble of independent trees trained using bagging (bootstrap aggregating) 
- Parameters may be optimized during the training: 
                       - maximum depth of trees 
                       - number of trees within ensemble 
                       - function used to measure quality of split of samples within tree’s node (impurity measure) 


• Hyper-parameter space for RF optimization:  
- maximum depth of trees : {5, 7, 10, 12, 15, 17, 20} 
- number of trees : {200, 400, 600, 800, 1000, 1200} 
- impurity measure: {Gini, Entropy}


• Dataset split:  
- 60% of the samples used for training and hyper-parameter optimization (grid search) using 3-fold cross-validation 
- 40% of the samples used for classifier evaluation

dmax
Ntrees
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Optimized parameters of random forest classifier

With precuts Without precuts

pT,D0 [GeV/c] 0-1 1-2 2-3 3-5 5-8 0-1 1-2 2-3 3-5 5-8

10 13 12 10 7 15 15 12 12 7

1200 600 1000 200 200 1200 600 1000 1200 200

Impurity measure Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

dmax
Ntrees



Boosted decision trees
• Boosted decision trees (BDT):  

- TMVA package used 
- Ensemble of shallow trees linked together using boosting algorithm (AdaBoost) 
- Training of individual trees is not independent, data misclassified by a tree have higher weight in the training of 
the next tree (class weights are balanced using weights coming from classification error fraction)


• Error fraction:  
- Calculated as how much signal events have positive BDT response (defined in [-1,1] range) and vice-versa for the 
background 
- Error fraction is getting higher with increasing  and converges 
- The trees with error fraction close to 0.5 are very weak classifiers


• BDT parameters: 
-  : selected as 500 (based on error  
   fraction convergence) 
- Impurity measure: Gini 
- maximum tree depth : 3 
- bagging is applied to minimize overtraining

Ntrees

Ntrees

dmax
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- Keras package used

 
- Supervised machine learning algorithm able to perform non-linear 
transformation of input space 
 
- May address complex classification problems more effectively 
when optimized properly 
 
- Requires large amount of CPU time, computational power and 
training data


- Feature-wise standardization was applied to topological variables

Hyper-parameter space for deep neural network setup optimization

Parameter Activation a Init. Learning rate 
[        ] Dropout rate p Optimizer Kernel init. Batch size Neurons in hidden 

layer  w

Options

ReLU 0.1 0.2 Adam Lecun uniform 64 64

Tanh 0.5 0.3 Stoch. grad. 
Descent He Normal 128 128

1.0 0.4 AdaMax He uniform 256

Deep neural network
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input layer of 7 neurons

hidden layer of w neurons, BN, a, dropout(p)

output layer of 1 neuron, a = sigmoid

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

hidden layer of w neurons, BN, a, dropout(p)

Input layer of 7 neurons

Output layer of 1 neuron,  
a = sigmoid

Hidden layers,

w neurons,  

BN, a, dropout(p)

⋅ 10−5



Deep neural network
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• Dataset split:  
- training data: 40% of the samples used for training and hyper-parameter optimization (pre-training 70 epochs) 
- validation data: 20% of the samples used to evaluate the pre-trained models (selection of best hyper-parameters  
  combination) 
- training data are then used again to train model with optimized hyper-parameters, training is stopped with   
  EarlyStopping rule only (validation ACC was not improved during last 60 epochs) 
- test data: 20% of the samples used to evaluate the final model

Optimized parameters of deep neural network
With precuts Without precuts

pT,D0 [GeV/c] 0-1 1-2 2-3 3-5 5-8 0-1 1-2 2-3 3-5 5-8

Activation a ReLU
 ReLU
 ReLU
 ReLU
 ReLU
 ReLU
 ReLU

eLu

ReLU
 ReLU
 tanh
Init. Learning rate [        ] 1 1 1 1 1 1 1 1 1 1
Dropout rate p 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam
Kernel init. He Normal He uniform Lecun unif. Lecun unif. Lecun unif. He Normal Lecun unif. Lecun unif. Lecun unif. Lecun unif.
Batch size 64 64 64 64 64 64 64 64 64 64
Neurons in hidden layer  w 256 256 256 256 256 256 256 256 256 25ž

⋅ 10−5



Evaluation of receiver operating characteristics over test set 
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Area under receiver operating characteristic curve (AUC)

With precuts Without precuts

pT,D0 [GeV/c] 0-1 1-2 2-3 3-4 4-5 0-1 1-2 2-3 3-4 4-5

RF 0.81 0.87 0.94 0.95 0.96 0.73 0.79 0.82 0.90 0.94

BDT 0.78 0.84 0.90 0.93 0.93 0.70 0.76 0.83 0.89 0.94

DNN 0.79 0.83 0.90 0.93 0.91 0.70 0.76 0.83 0.89 0.92

• Classification ability increases with 
higher pT,D0


• For pT,D0 < 5 GeV/c, classifiers trained 
over the data after preselection 
criteria (cuts) application achieve 
higher AUC values as those trained 
without their application.


• RF classification has significantly 
better performance than other 
methods



Conclusion
• Various machine learning methods (RF, BDT, DNN) were compared in order to obtain efficient 

classifier for finding signal in two-body decay of  meson


• HIJING full-event simulation of 2016 d+Au collisions at √sNN = 200 GeV was used to study D0 → K π 
decay channel


• Tight cut preselection and the option with no preselection criteria was applied to topological 
variables


• Despite the fact, that RF method is not common in high-energy physics, it shows notable 
enhancement of signal efficiency compared to the other presented methods.


• DNN in presented setup does not show significant improvement compared to the widely used BDT.  
 - However, their performance is close and the DNN might help to improve signal significance in similar analyses

D0
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Backup



Signal and background efficiencies vs. 
reconstructed transverse momentum of Kπ pairs


