Nuclear Effects In The Inclusive Production of Vectorial Mesons at Proton-Nucleus Collisions

Authors: ¹Érison dos Santos Rocha ¹Magno Valério Trindade Machado

¹Institute of Physics of Federal University of Rio Grande do Sul

August/2021
In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions:

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions;

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions;

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions;

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
Summary

In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions;

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions:

- Introduction and motivation;
- Discuss the color dipole approach;
- Define dipole cross section amplitude models for our analysis;
- Present the quarkonium production cross section;
- Show the results and conclusions;
The understanding of \(J/\psi \) production dynamics is an open topic in the high energies nuclear physics.

- In the 80's, the \(J/\psi \) suppression was proposed as ultimate test of quark-gluon plasma (QGP)\(^1\);
 - Although useful for study the QGP, it remains as open topic;
- The cold nuclear effects is similar to \(J/\psi \) suppression and affects his production;
- Therefore, a better understanding of this picture enhance the knowledge of QGP impact in this meson production\(^2\);
- One way of estimate such effects is through Nuclear Modification Factors \((R_{AB}) \)\(^3\), that is cross section's dependent;
The understanding of J/ψ production dynamics is a open topic in the high energies nuclear physics.

- In the 80’s, the J/ψ suppression was proposed as ultimate test of quark-gluon plasma (QGP)\cite{1};
 \Rightarrow Although useful for study the QGP, it remains as open topic;

- The cold nuclear effects is similar to J/ψ suppression and affects his production;

- Therefore, a better understanding of this picture enhance the knowledge of QGP impact in this meson production\cite{2};

★ One way of estimate such effects is through Nuclear Modification Factors (R_{AB})\cite{3}, that is cross section’s dependent;
The understanding of J/ψ production dynamics is a open topic in the high energies nuclear physics.

- In the 80’s, the J/ψ suppression was proposed as ultimate test of quark-gluon plasma (QGP)\cite{1};
 - Although useful for study the QGP, it remains as open topic;
- The cold nuclear effects is similar to J/ψ suppression and affects his production;
- Therefore, a better understanding of this picture enhance the knowledge of QGP impact in this meson production\cite{2};

-\star One way of estimate such effects is through Nuclear Modification Factors (R_{AB})\cite{3}, that is cross section’s dependent;
The understanding of J/ψ production dynamics is an open topic in the high energies nuclear physics.

- In the 80’s, the J/ψ suppression was proposed as ultimate test of quark-gluon plasma (QGP)[1];
 ⇒ Although useful for study the QGP, it remains as open topic;
- The cold nuclear effects is similar to J/ψ suppression and affects his production;
- Therefore, a better understanding of this picture enhance the knowledge of QGP impact in this meson production[2];
- One way of estimate such effects is through Nuclear Modification Factors (R_{AB})[3], that is cross section’s dependent;
The QGP evolution takes place in several steps which we can’t observe directly\cite{4, 5};
- The observation is done through experimental observables;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest signal of QGP medium\cite{6, 7}.

- One expects that in a hot and dense medium occurs $S\bar{S}$ pair production\cite{6, 7};
 - Experiments at RHIC and LHC energies shows an increasing in the strange particles production\cite{8, 9};
- Experimental observations indicates that the collective behaviour of matter of medium produced by RHIC and LHC are similar\cite{10};
 - From this, one could get that initial conditions of pressure are bigger in LHC than RHIC;

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
The QGP evolution takes place in several steps which we can’t observe directly\cite{4, 5};
- The observation is done through experimental observables;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest signal of QGP medium\cite{6, 7}.

★ One expects that in a hot and dense medium occurs $S\bar{S}$ pair production\cite{6, 7};
 ⇒ Experiments at RHIC and LHC energies shows an increasing in the strange particles production\cite{8, 9};
★ Experimental observations indicates that the collective behaviour of matter of medium produced by RHIC and LHC are similar\cite{10};
 ⇒ From this, one could get that initial conditions of pressure are bigger in LHC than RHIC;

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
Quark-Gluon Plasma (QGP)

- The QGP evolution takes place in several steps which we can’t observe directly[4, 5];
 - The observation is done through experimental observables;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest signal of QGP medium[6, 7].

- One expects that in a hot and dense medium occurs $S\bar{S}$ pair production[6, 7];
 - Experiments at RHIC and LHC energies shows an increasing in the strange particles production[8, 9];

- Experimental observations indicates that the collective behaviour of matter of medium produced by RHIC and LHC are similar[10];
 - From this, one could get that initial conditions of pressure are bigger in LHC than RHIC;

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
Quark-Gluon Plasma (QGP)

- The QGP evolution takes place in several steps which we can’t observe directly\cite{4, 5};
 - The observation is done through experimental observables;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest signal of QGP medium\cite{6, 7}.

- One expects that in a hot and dense medium occurs $S\bar{S}$ pair production\cite{6, 7};
 - Experiments at RHIC and LHC energies shows an increasing in the strange particles production\cite{8, 9};

- Experimental observations indicates that the collective behaviour of matter of medium produced by RHIC and LHC are similar\cite{10};
 - From this, one could get that initial conditions of pressure are bigger in LHC than RHIC;

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
The QGP evolution takes place in several steps which we can’t observe directly\cite{4, 5};
- The observation is done through experimental observables;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest signal of QGP medium\cite{6, 7}.

★ One expects that in a hot and dense medium occurs $S\bar{S}$ pair production\cite{6, 7};
 ⇒ Experiments at RHIC and LHC energies shows an increasing in the strange particles production\cite{8, 9};
★ Experimental observations indicates that the **collective behaviour of matter** of medium produced by RHIC and LHC are similar\cite{10};
 ⇒ From this, one could get that initial conditions of pressure are bigger in LHC than RHIC;

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
The color dipole formalism considers the **photons and gluons** as a **superposition of Fock states**, where the $q\bar{q}$ pairs are the dominant Fock states\(^{[11]}\);

\[\Rightarrow \text{For instance, we can consider the fluctuation } \gamma^* \rightarrow q\bar{q};\]

\[\Rightarrow \text{Fluctuation } q\bar{q} \text{ lifetime } \gg \text{ target lifetime interaction;}\]

\[\Rightarrow \text{Therefore, this approach allow us to factorize the QED } (\gamma^* \rightarrow q\bar{q}) \text{ from QCD } (q\bar{q}\text{-target interaction}) \text{ part, acting like separated process;}\]

\[\text{Color dipole cross section}^{[11]}\]

\[
\sigma_{\text{tot}}^{\gamma^* p}(x, Q^2) = \int \frac{d^2 x_\perp}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi^{\gamma^* \rightarrow q\bar{q}}(x_\perp, z)|^2 \sigma_{\text{tot}}^{q\bar{q} p}(x_\perp, Y); \tag{1}
\]

\[\Rightarrow \text{where } z \text{ is the quark momentum fraction } ((1-z) \text{ for anti-quark}); Y \sim \ln(1/x) \text{ is the rapidity interval for dipole-proton scattering;}\]
The color dipole formalism considers the photons and gluons as a superposition of Fock states, where the $q\bar{q}$ pairs are the dominant Fock states[11];

⇒ For instance, we can consider the fluctuation $\gamma^* \rightarrow q\bar{q}$;

⇒ Fluctuation $q\bar{q}$ lifetime \gg target lifetime interaction;

⇒ Therefore, this approach allow us to factorize the QED ($\gamma^* \rightarrow q\bar{q}$) from QCD ($q\bar{q}$-target interaction) part, acting like separated process;

![Color dipole](image)

Color dipole cross section[11]

$$
\sigma_{\text{tot}}^{\gamma^*p}(x, Q^2) = \int \frac{d^2 x_\perp}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi_{\gamma^* \rightarrow q\bar{q}}(x_\perp, z)|^2 \sigma_{\text{tot}}^{q\bar{q}p}(x_\perp, Y);
$$

where z is the quark momentum fraction ($(1-z)$ for anti-quark); $Y \sim \ln(1/x)$ is the rapidity interval for dipole-proton scattering;
The color dipole formalism considers the photons and gluons as a superposition of Fock states, where the $q\bar{q}$ pairs are the dominant Fock states\cite{11};

⇒ For instance, we can consider the fluctuation $\gamma^* \rightarrow q\bar{q}$;

⇒ Fluctuation $q\bar{q}$ lifetime \gg target lifetime interaction;

⇒ Therefore, this approach allow us to factorize the QED ($\gamma^* \rightarrow q\bar{q}$) from QCD ($q\bar{q}$-target interaction) part, acting like separated process;

\[
\sigma_{\gamma^*p}^{\gamma^*p}(x, Q^2) = \int \frac{d^2 x}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi_{\gamma^*\rightarrow q\bar{q}}(x_\perp, z)|^2 \sigma_{q\bar{q}p}^{q\bar{q}p}(x_\perp, Y);
\]
The color dipole formalism considers the photons and gluons as a superposition of Fock states, where the $q\bar{q}$ pairs are the dominant Fock states[11];

For instance, we can consider the fluctuation $\gamma^* \rightarrow q\bar{q}$; Fluctuation $q\bar{q}$ lifetime \gg target lifetime interaction;

Therefore, this approach allow us to factorize the QED ($\gamma^* \rightarrow q\bar{q}$) from QCD ($q\bar{q}$-target interaction) part, acting like separated process;

\[
\sigma_{\gamma^*p}^\gamma(x, Q^2) = \int \frac{d^2 x_\perp}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi_{\gamma^* \rightarrow q\bar{q}}(x_\perp, z)|^2 \sigma_{q\bar{q}p}^{\gamma^*p}(x_\perp, Y); (1)
\]

where z is the quark momentum fraction ($(1-z)$ for anti-quark); $Y \sim \ln(1/x)$ is the rapidity interval for dipole-proton scattering;
The color dipole formalism considers the photons and gluons as a superposition of Fock states, where the $q\bar{q}$ pairs are the dominant Fock states[11];

⇒ For instance, we can consider the fluctuation $\gamma^* \rightarrow q\bar{q}$;

- **Fluctuation $q\bar{q}$ lifetime ≫ target lifetime interaction**;

⇒ Therefore, this approach allow us to factorize the QED ($\gamma^* \rightarrow q\bar{q}$) from QCD ($q\bar{q}$-target interaction) part, acting like separated process;

Color dipole cross section[11]

$$
\sigma_{tot}^{\gamma^* p}(x, Q^2) = \int \frac{d^2 x_{\perp}}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi_{\gamma^* \rightarrow q\bar{q}}(x_{\perp}^-, z)|^2 \sigma_{tot}^{q\bar{q} p}(x_{\perp}^-, Y);
$$ \hspace{1cm} (1)

- where z is the quark momentum fraction ($(1-z)$ for anti-quark); $Y \sim \ln(1/x)$ is the rapidity interval for dipole-proton scattering;
The color dipole formalism considers the **photons and gluons** as a **superposition of Fock states**, where the $q\bar{q}$ pairs are the dominant Fock states\[11]\;:

\[
\Rightarrow \text{For instance, we can consider the fluctuation } \gamma^* \rightarrow q\bar{q};
\]

Fluctuation $q\bar{q}$ lifetime \gg target lifetime interaction;

\[
\Rightarrow \text{Therefore, this approach allow us to factorize the QED (}\gamma^* \rightarrow q\bar{q}) \text{ from QCD (}$q\bar{q}$-target interaction) part, acting like separated process;}

\[
\text{Color dipole cross section}[11]
\]

\[
\sigma_{\text{tot}}^{\gamma^* p}(x, Q^2) = \int \frac{d^2 x_\perp}{4\pi} \int_0^1 \frac{dz}{z(1-z)} |\Psi_{\gamma^* \rightarrow q\bar{q}}(x_\perp, z)|^2 \sigma_{\text{tot}}^{q\bar{q} p}(x_\perp, Y);
\]

\[
\text{where } z \text{ is the quark momentum fraction } ((1 - z) \text{ for anti-quark); } Y \sim \ln(1/x) \text{ is the rapidity interval for dipole-proton scattering;}
\]
The Glauber formalism can be used for taking into account nuclear corrections in the dipole-nuclei interaction\cite{12};

- It considers multiple scattering, including nuclear shadowing effects;
- The extension of such formalism results in the Glauber-Muller expression:

\[\sigma_{GM}^{\text{dip}} = 2 \int d^2 \vec{b} \left[1 - e^{-\frac{1}{2} \sigma_{\bar{q}q \text{nucleon}} S(\vec{b})} \right] ; \] (2)

where:
- $\sigma_{\bar{q}q \text{nucleon}}$ is the $\bar{q}q$-nucleon cross section;
- $S(\vec{b})$ is the thickness function of a given nuclei;
The Glauber-Mueller formalism

- The **Glauber formalism** can be used for taking into account nuclear corrections in the dipole-nuclei interaction[12];
- It considers multiple scattering, including **nuclear shadowing effects**;
- The extension of such formalism results in the **Glauber-Mueller expression**:

\[
\sigma_{dip}^{GM} = 2 \int d^2 \vec{b} \left[1 - e^{-\frac{1}{2} \sigma_{nucleon}^{q\bar{q}} S(b)} \right];
\] (2)

- where:
 - \(\sigma_{nucleon}^{q\bar{q}} \) is the \(q\bar{q} \)-nucleon cross section;
 - \(S(b) \) is the thickness function of a given nuclei;
The Glauber-Mueller formalism

- The **Glauber formalism** can be used for taking into account nuclear corrections in the dipole-nuclei interaction[12];

 ⇒ It consider multiple scattering, including **nuclear shadowing effects**;

- The extension of such formalism results in the **Glauber-Muller expression**:

\[
\sigma_{GM}^{dip} = 2 \int d^2 \vec{b} \left[1 - e^{-\frac{1}{2} \sigma_{nucleon}^{q\bar{q}} S(\vec{b})} \right];
\] (2)

where:

- \(\sigma_{nucleon}^{q\bar{q}} \) is the \(q\bar{q} \)-nucleon cross section;
- \(S(\vec{b}) \) is the thickness function of a give nuclei;
The Glauber-Mueller formalism

- The **Glauber formalism** can be used for taking into account nuclear corrections in the dipole-nuclei interaction[12];
- It considers multiple scattering, including **nuclear shadowing effects**;
- The extension of such formalism results in the **Glauber-Muller expression**:

\[
\sigma_{dip}^{GM} = 2 \int d^2 \vec{b} \left[1 - e^{-\frac{1}{2} \sigma_{nucleon}^{q\bar{q}} S(\vec{b})} \right];
\]

where:
- \(\sigma_{nucleon}^{q\bar{q}} \) is the \(q\bar{q} \)-nucleon cross section;
- \(S(\vec{b}) \) is the thickness function of a given nuclei;
The Glauber-Mueller formalism

- The **Glauber formalism** can be used for taking into account nuclear corrections in the dipole-nuclei interaction[12];
- It considers multiple scattering, including **nuclear shadowing effects**;
- The extension of such formalism results in the **Glauber-Muller expression**:

$$\sigma_{GM_{dip}} = 2 \int d^2 \vec{b} \left[1 - e^{-\frac{1}{2} \sigma_{q\bar{q}}^{nucleon} S(\vec{b})} \right];$$ \hspace{1cm} (2)

- where:
 - $\sigma_{q\bar{q}}^{nucleon}$ is the $q\bar{q}$-nucleon cross section;
 - $S(\vec{b})$ is the thickness function of a given nucleus;
In this work, we consider the quarkonium production cross section in the **quasi-classical QCD dipole model**[15–17]:

- The quasi-classical approach takes the nuclei as being described by a classic color field, i.e., that obey Yang-Mills equations;
 - It’s possible to use it if $\alpha_s^2 A^{1/3} \sim 1$; in this condition one have a high parton density in the process;
- This approach is a multiple scattering approximation similar to the Glauber-Mueller one;
- Basically, the cross section is obtained from the **contributions that takes place before and after the last inelastic gluon-nuclei interaction**:

$$
\frac{d\sigma_{pA \to J/\psi X}}{dy \, d^2b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2r'}{4\pi} \Phi(r', z') \times \frac{4\vec{r} \cdot \vec{r}'}{(\vec{r} + \vec{r}')^2} \left[\left[1 - N_A((\vec{r} - \vec{r}')/2, y) \right] - \left[1 - N_F(\vec{r}, y) \right]\left[1 - N_F(\vec{r}', y) \right] \right];
$$

where:

1. x_1: Parton distribution function.
2. $G(x_1, m_c^2)$: The gluon distribution function.
3. $\Phi(r, z)$: The color field.
4. N_A and N_F: The number of partons in the nucleus and in the free space, respectively.
In this work, we consider the quarkonium production cross section in the **quasi-classical QCD dipole model**[15–17]:

The quasi-classical approach takes the nuclei as being describe by a classic color field, i.e., that obey Yang-Mills equations;

- It’s possible to use it if $\alpha_s^2 A^{1/3} \sim 1$; in this condition one have a high parton density in the process;
- This approach is a multiple scattering approximation similar to the Glauber-Mueller one;
- Basically, the cross section is obtained from the contributions that takes place before and after the last inelastic gluon-nuclei interaction:

\[
\frac{d\sigma_{pA \rightarrow J/\psi X}}{dy d^2b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2r'}{4\pi} \Phi(r', z') \times \frac{4\vec{r} \cdot \vec{r}'}{(\vec{r} + \vec{r}')^2} \left([1 - N_A((\vec{r} - \vec{r}')/2, y)] - [1 - N_F(\vec{r}, y)] [1 - N_F(\vec{r}', y)] \right); \tag{3}
\]

where:

$$
\begin{align*}
\Phi(r, z) & = \frac{1}{2\pi} e^{-|r|^2} \\
N_A & = \int d^2r \Phi(r, z) \\
N_F & = \int d^2r \Phi(r, z) \\
\end{align*}
$$

Differential cross section for J/ψ production in pA collisions[18]
In this work, we consider the quarkonium production cross section in the quasi-classical QCD dipole model\cite{15-17}:

- The quasi-classical approach takes the nuclei as being described by a classic color field, i.e., that obey Yang-Mills equations;
 - It's possible to use it if $\alpha_s^2 A^{1/3} \sim 1$; in this condition one has a high parton density in the process;
- This approach is a multiple scattering approximation similar to the Glauber-Mueller one;
- Basically, the cross section is obtained from the contributions that take place before and after the last inelastic gluon-nuclei interaction:

\[
\frac{d\sigma_{pA\rightarrow J/\psi X}}{dy \, d^2 b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2 r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2 r'}{4\pi} \Phi(r', z') \times \frac{4r \cdot r'}{(r + r')^2} \left([1 - N_A((r - r')/2, y)] - [1 - N_F(r, y)] [1 - N_F(r', y)] \right) ; \tag{3}
\]

where:

\[
\int_0^1 dz \int \frac{d^2 r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2 r'}{4\pi} \Phi(r', z') \times \frac{4r \cdot r'}{(r + r')^2} = 1
\]
In this work, we consider the quarkonium production cross section in the **quasi-classical QCD dipole model**[15–17]:

- The quasi-classical approach takes the nuclei as being describe by a classic color field, i.e., that obey Yang-Mills equations;
 - It's possible to use it if $\alpha_s^2 A^{1/3} \sim 1$; in this condition one have a high parton density in the process;
- This approach is a multiple scattering approximation similar to the Glauber-Mueller one;
- Basically, the cross section is obtained form the contributions that takes place before and after the last inelastic gluon-nuclei interaction:

\[
\frac{d\sigma_{pA\rightarrow J/\psi X}}{dy \, d^2b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2r'}{4\pi} \Phi(r', z') \times \frac{4\vec{r} \cdot \vec{r}'}{(\vec{r} + \vec{r}')^2} \left[1 - N_A((\vec{r} - \vec{r}')/2, y) \right] - \left[1 - N_F(\vec{r}, y) \right] \left[1 - N_F(\vec{r}', y) \right] ;
\]

(3)

where:
In this work, we consider the quarkonium production cross section in the **quasi-classical QCD dipole model**[15–17]:

- The quasi-classical approach takes the nuclei as being describe by a classic color field, i.e., that obey Yang-Mills equations;
 - It’s possible to use it if $\alpha_s^2 A^{1/3} \sim 1$; in this condition one have a high parton density in the process;
- This approach is a multiple scattering approximation similar to the Glauber-Mueller one;
- Basically, the cross section is obtained form the contributions that takes place before and after the last inelastic gluon-nuclei interaction:

Differential cross section for J/ψ production in pA collisions[18]

\[
\frac{d\sigma_{pA \rightarrow J/\psi X}}{dy \ d^2b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2r'}{4\pi} \Phi(r', z') \\
\times \frac{4\vec{r} \cdot \vec{r}'}{(\vec{r} + \vec{r}')^2} \left([1 - N_A((\vec{r} - \vec{r}')/2, y)] - [1 - N_F(\vec{r}, y)] [1 - N_F(\vec{r}', y)] \right) ;
\]

where:
Dipole amplitude models

Quarkonium production cross section

Differential cross section for J/ψ production in pA collisions

\[
\frac{d\sigma_{pA \rightarrow J/ψX}}{dy \, d^2b} = x_1 G(x_1, m_c^2) \int_0^1 dz \int \frac{d^2r}{4\pi} \Phi(r, z) \int_0^1 dz' \int \frac{d^2r'}{4\pi} \Phi(r', z') \\
\times \frac{4\vec{r} \cdot \vec{r}'}{(\vec{r} + \vec{r}')^2} \left[1 - N_A((\vec{r} - \vec{r}')/2, y)\right] - [1 - N_F(\vec{r}, y)] [1 - N_F(\vec{r}', y)] ;
\]

where:

- \(z \) is the momentum fraction, \(r \) the dipole transverse size;
- \(b \) is the impact parameter, \(Q_s \) is the saturation scale;
- \(\Phi(r, z) \) the meson wave function;
- \(G(x_1, m_c^2) \) the distribution function of gluons in the projectile proton;
- ★ The \(N_A \) and \(N_F \) are the dipole-quark elastic scattering amplitude in the **Adj**oint and **Fund**amental representations, respectively;
The Golec-Biernat-Wustoff (GBW) phenomenological amplitude model

The GBW amplitude model [19, 20] propose a parametrization of the dipole cross section from the Deep Inelastic Scattering data, due the difficulties of modelling the non-integrated gluon function;

- In this model, we have:

\[
N_A(r, 0, y) = 2N_F(r, b, y) - N_F^2(r, b, y)
\]

\[
N_F(r, 0, y) = 1 - e^{-\frac{r^2 Q_s^2}{4}};
\]

- where \(r \) is the transverse distance; \(Q_s \) is the saturation scale given by

\[
Q_s^2 = \frac{9}{4} \left\{ A^{1/3} \left(\frac{x_0}{x_2} \right)^{\lambda} \right\};
\]

- with \(x_0 = 3 \times 10^{-4} \) and \(\lambda = 0.288 \) [21];

★ we use the equation (4) through our entire work;
The Golec-Biernat-Wustoff (GBW) phenomenological amplitude model

The GBW amplitude model [19, 20] propose a parametrization of the dipole cross section from the Deep Inelastic Scattering data, due to the difficulties of modelling the non-integrated gluon function;

- In this model, we have:

\[
N_A(r, 0, y) = 2N_F(r, b, y) - N_F^2(r, b, y)
\]

\[
N_F(r, 0, y) = 1 - e^{-\frac{r^2 Q_s^2}{4}};
\]

- where \(r \) is the transverse distance; \(Q_s \) is the saturation scale given by

\[
Q_s^2 = \frac{9}{4} \left\{ A^{1/3} \left(\frac{x_0}{x_2} \right)^{\lambda} \right\};
\]

- with \(x_0 = 3 \times 10^{-4} \) and \(\lambda = 0.288 \) [21];

- we use the equation (4) through our entire work;
The Dumitru-Hayashigaki-Jalilian (DHJ) model

The DHJ model [22] suggests improvements in the profile parametrization of dipole regarding the Kharzeev-Kovchegov-Tuchin (KKT) model[23, 24], in order to provide a better data description in central rapidity. Such agreement keeps the Color Glass Condensate formalism predictions;

- In this model, we have:
 \[N_A(r, 0, y) = 1 - e^{-\frac{1}{4}(r^2Q_s^2)\gamma} \]
 \[N_F(r, 0, y) = 1 - \sqrt{1 - N_A(r, 0, y)} \]
 \[\text{with } \gamma = \gamma_s + (1 - \gamma_s)\frac{\ln(m^2/Q_s^2)}{\lambda Y + \ln(m^2/Q_s^2) + d\sqrt{Y}}; \]

- where \(Y = \ln(1/x), x = x_2 = me^{-y}/\sqrt{S}, \gamma_s = 0.628 \) and \(d = 1.2 \) [22];
The bCGC model

The bCGC model [25] gives the density properties of gluons in the hadrons, both in the longitudinal and transversal dimensions, including the dependency of impact parameter in the saturation scale;

- In this model, we have:

\[
N_A(r, 0, y) = \begin{cases}
N_0 \left(\frac{r^2 Q_s^2}{4} \right)^\lambda, \quad rQ_s \leq 2, & \text{with} \\
1 - e^{-\mathcal{A} \ln^2 (B r Q_s)}, \quad rQ_s > 2
\end{cases}
\]

\[
\gamma = \gamma_s + \frac{\ln(2/r Q_s)}{k \lambda \ln(1/x)},
\]

\[
\mathcal{A} = -\frac{N_0^2 \gamma_s^2}{(1 - N_0)^2 \ln(1 - N_0)},
\]

\[
B = \frac{1}{2} (1 - N_0)^{-(1 - N_0)/N_0 \gamma_s},
\]

- where \(Y = \ln(1/x), \gamma_s = 0.649, N_0 = 0.7, \lambda = 0.2023, x_0 = 0.00069 \) [26] and \(k = 9.9 \) [25];
The main goal of the present work is to evaluate **nuclear modifications factors** R_{pA} in the rapidity spectrum;

In particular, we are going to analyze the factors in terms of the differential cross sections [27]:

$$R_{pA}(y) = \frac{d\sigma_{pA}(y)/dy}{Ad\sigma_{pp}/dy}$$

This allow us to analyze the quarkonium suppression as long as $R_{pA}(y)$ differs from the unit;
The main goal of the present work is to evaluate nuclear modifications factors \(R_{pA} \) in the rapidity spectrum;

In particular, we are going to analyze the factors in terms of the differential cross sections [27]:

\[
R_{pA}(y) = \frac{d\sigma_{pA}(y)/dy}{A d\sigma_{pp}/dy}
\]

This allows us to analyze the quarkonium suppression as long as \(R_{pA}(y) \) differs from the unit;
Nuclear modification factors R_{pA}

- The main goal of the present work is to evaluate **nuclear modifications factors** R_{pA} in the rapidity spectrum;
- In particular, we are going to analyze the factors in terms of the differential cross sections [27]:

$$R_{pA}(y) = \frac{d\sigma_{pA}(y)/dy}{Ad\sigma_{pp}/dy}$$

- This allow us to analyze the quarkonium suppression as long as $R_{pA}(y)$ differs from the unit;
Numerical results

- In the following, are shown the numerical result from our analyzes for RHIC and LHC;
- We compare it with experimental data from several collaborations
 - LHCb [28–31], ALICE [32, 33, 33], CMS [34], ATLAS [35];
 - PHENIX [36];
Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC data at pPb collision for J/ψ production;

The results shows suppression higher than the experimental data: (a) $\sim 25\%$ and (b) $\sim 20\%$ at $y \sim 0$; the prediction at (c) shows strong suppression across the entire spectrum ($\sim 75\%$ at forward rapidity);
Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC data at pPb collision for J/ψ production;

The results shows suppression higher than the experimental data: (a) $\sim 25\%$ and (b) $\sim 20\%$ at $y \sim 0$; the prediction at (c) shows strong suppression across the entire spectrum ($\sim 75\%$ at forward rapidity);
J/ψ results with RHIC energies

- **Numerical results**

 - **Nuclear modification ratios as function of energy for (a) 200 GeV, with RHIC data at dAu collision for J/ψ production;**

 - **Good agreement with experimental data, but strong suppression for bCGC model;**

 - **$R_{dAu} > 1$ only for GBW amplitude;**
Nuclear modification ratios as function of energy for (a) 200 GeV, with RHIC data at dAu collision for J/ψ production;

- Good agreement with experimental data, but strong suppression for bCGC model;
- $R_{dAu} > 1$ only for GBW amplitude;
J/ψ results with RHIC energies

- Nuclear modification ratios as function of energy for (a) 200 GeV, with RHIC data at dAu collision for J/ψ production;
- Good agreement with experimental data, but strong suppression for bCGC model;
- $R_{dAu} > 1$ only for GBW amplitude;
Results and conclusion

Numerical results

Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC data at pPb collision for γ production;

The results shows enhancement and suppression up to $\sim 70\%$ and $\sim 50\%$, respectively; the prediction (c) also shows enhancement and suppression up to $\sim 70\%$ and $\sim 50\%$, respectively;
Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC data at pPb collision for Υ production;

The results shows enhancement and suppression up to $\sim 70\%$ and $\sim 50\%$, respectively; the prediction (c) also shows enhancement and suppression up to $\sim 70\%$ and $\sim 50\%$, respectively;
Conclusions

- In general, the nuclear modification factors for J/ψ production have been shown more suppression than Υ case;
- In particular, the bCGC model overestimated the suppression more than other models;
- Further, the evaluation are very sensitive to the saturation scale and another approaches should be analyzed;
- Also, an enhanced study can be made taking into account another theoretical approaches, beyond quasi-classical one.
Conclusions

- In general, the nuclear modification factors for J/ψ production have been shown more suppression than Υ case;
- In particular, the bCGC model overestimated the suppression more than other models;
- Further, the evaluation are very sensitive to the saturation scale and another approaches should be analyzed;
- Also, an enhanced study can be made taking into account another theoretical approaches, beyond quasi-classical one.
In general, the nuclear modification factors for J/ψ production have been shown more suppression than Υ case;

In particular, the bCGC model overestimated the suppression more than other models;

Further, the evaluation are very sensitive to the saturation scale and another approaches should be analyzed;

Also, an enhanced study can be made taking into account another theoretical approaches, beyond quasi-classical one.
Conclusions

- In general, the nuclear modification factors for J/ψ production have been shown more suppression than Υ case;
- In particular, the bCGC model overestimated the suppression more than other models;
- Further, the evaluation are very sensitive to the saturation scale and another approaches should be analyzed;
- Also, an enhanced study can be made taking into account another theoretical approaches, beyond quasi-classical one.
Thank you!
References

Results and conclusion

Conclusions

References IV

[34] CMS Collaboration. Nuclear modification of Υ states in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. 2019.
