
Nuclear Effects In The Inclusive Production of Vectorial Mesons at
Proton-Nucleus Collisions

Authors: 1Érison dos Santos Rocha 1Magno Valério Trindade Machado

1Institute of Physics of Federal University of Rio Grande do Sul

August/2021

É.Rocha and M.V.T.Machado (UFRGS) Nuclear Effects at p-A Collisions (simplified version) August/2021 1 / 10



Summary

Summary

In this work, we analyze nuclear effects in the inclusive production of vector mesons at p-A collisions;
Introduction and motivation;
Theoretical summary;
Show the results and conclusions;
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Introduction Motivation

Motivation

The understanding of J/ψ production dynamics is a open topic in the high energies nuclear physics.

In the 80’s, the J/ψ suppression was proposed as ultimate test of quark-gluon plasma (QGP)[1];
⇒ Although useful for study the QGP, it remains as open topic;

The cold nuclear effects is similar to J/ψ suppression and affects his production;
Therefore, a better understanding of this picture enhance the knowledge of QGP impact in this meson
production[2];

F One way of estimate such effects is through Nuclear Modification Factors (RAB)[3], that is cross section’s
dependent;

The increasing of hadron production with quantum numbers not present in the colliding matter is one of oldest
signal of QGP medium[4, 5].

The quarkonium suppression is a theoretical proposal of a clear signature of deconfined matter.
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Dipole amplitude models Quarkonium production cross section

Quarkonium production cross section

In this work, we consider the quarkonium production cross section in the quasi-classical QCD dipole
model[6–8]:
The quasi-classical approach takes the nuclei as being describe by a classic color field, i.e., that obey
Yang-Mills equations;
Basically, the cross section is obtained form the contributions that takes place before and after the last
inelastic gluon-nuclei interaction:

Differential cross section for J/ψ production in pA collisions[9]

dσpA→J/ψX

dy d2b
= x1G(x1,m

2
c)
∫ 1

0
dz

∫
d2r

4π Φ(r, z)
∫ 1

0
dz′
∫

d2r′

4π Φ(r′, z′) 4~r · ~r ′

(~r + ~r ′)2

×
([

1−NA((~r − ~r ′)/2, y)
]
− [1−NF (~r, y)]

[
1−NF (~r ′, y)

])
; (1)

The generalization done in Eq. (1) allow us to use dipole scattering amplitude models;
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Dipole scattering amplitude models

In this work, we make use of the following models:

The Golec-Biernat-Wustoff (GBW) phenomenological amplitude model
The GBW amplitude model [10, 11] propose a parametrization of the dipole cross section from the Deep
Inelastic Scattering data, due the difficulties of modelling the non-integrated gluon function;

The Dumitru-Hayashigaki-Jalilian (DHJ) model
The DHJ model [12] suggests improvements in the profile parametrization of dipole regarding the
Kharzeev-Kovchegov-Tuchin (KKT) model[13, 14], in order to provide a better data description in central
rapidity. Such agreement keeps the Color Glass Condensate formalism predictions;

The bCGC model
The bCGC model [15] gives the density properties of gluons in the hadrons, both in the longitudinal and
transversal dimensions, including the dependency of impact parameter in the saturation scale;
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Results and conclusion Nuclear modification factors

Nuclear modification factors RpA

The main goal of the present work is to evaluate nuclear modifications factors RpA in the rapidity
spectrum;

RpA(y) = dσpA(y)/dy
Adσpp/dy

;

F This allow us to analyze the quarkonium suppression as long as RpA(y) differs from the unit;

⇒ In the following, are shown the numerical result from our analyzes for RHIC and LHC;
⇒ We compare it with experimental data from several collaborations

F LHCb [16–19], ALICE [20, 21, 21], CMS [22], ATLAS [23];
F PHENIX [24];
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Results and conclusion Numerical results

J/ψ results with LHC energies

Ψ

Ψ

Figure: (a)

Ψ

Ψ

Figure: (b)

Ψ

Figure: (c)

Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC
data at pPb collision for J/ψ production;
The results shows suppression higher than the experimental data: (a) ∼ 25% and (b) ∼ 20% at y ∼ 0; the
prediction at (c) shows strong suppression across the entire spectrum (∼ 75% at forward rapidity);

É.Rocha and M.V.T.Machado (UFRGS) Nuclear Effects at p-A Collisions (simplified version) August/2021 7 / 10



Results and conclusion Numerical results

J/ψ results with LHC energies

Ψ

Ψ

Figure: (a)

Ψ

Ψ

Figure: (b)

Ψ

Figure: (c)

Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC
data at pPb collision for J/ψ production;
The results shows suppression higher than the experimental data: (a) ∼ 25% and (b) ∼ 20% at y ∼ 0; the
prediction at (c) shows strong suppression across the entire spectrum (∼ 75% at forward rapidity);

É.Rocha and M.V.T.Machado (UFRGS) Nuclear Effects at p-A Collisions (simplified version) August/2021 7 / 10



Results and conclusion Numerical results

J/ψ results with RHIC energies

Ψ

Ψ

Figure: (a)

Nuclear modification ratios as function of energy for (a) 200 GeV, with RHIC data at dAu collision for J/ψ
production;
Good agreement with experimental data, but strong suppression for bCGC model;
RdAu > 1 only for GBW amplitude;
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Results and conclusion Numerical results

Υ results with LHC energies

Υ

Υ

Figure: (a)

Υ

Υ

Figure: (b)

Υ

Figure: (c)

Nuclear modification ratios as function of energy for (a) 5.02 TeV, (b) 8.16 TeV and (c) 8.8 TeV, with LHC
data at pPb collision for Υ production;
The results shows enhancement and suppression up to ∼ 70% and ∼ 50%, respectively; the prediction (c)
also shows enhancement and suppression up to ∼ 70% and ∼ 50%, respectively;
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Results and conclusion Conclusions

Conclusions

In general, the nuclear modification factors for J/ψ production have been shown more suppression than Υ
case;
In particular, the bCGC model overestimated the suppression more than other models;
Further, the evaluation are very sensitive to the saturation scale and another approaches should be analyzed;
Also, an enhanced study can be made taking into account another theoretical approaches, beyond
quasi-classical one.
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Results and conclusion Conclusions

Thank you!
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