10th International Conference on New Frontiers in Physics

Recent SND experiment results on e+e- annihilation to hadrons

On the behalf of SND Collaboration Aleksandr Korol (BINP, Novosibirsk) 30.08.2021

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids. SND collected data at the VEPP-2M (1996-2000) and VEPP-2000 (2010-2013,2016-...)

Main goal of SND experiment is study of all possible processes of e⁺e⁻ annihilation into hadrons below 2 GeV.

- ✓ The total hadronic cross section, which is calculated as a sum of exclusive cross sections.
- ✓ Study of hadronization (dynamics of exclusive processes).
 - \blacksquare Properties of excited vector mesons of the $\rho,\,\omega,\,\phi$ families
 - Development of MC event generator for $e^+e^- \rightarrow$ hadrons below 2 GeV.

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

- c.m. energy E = 0.3 2.0 GeV
- eircumference 24.4 m
- round beam optics
- Luminosity at E = 1.8 ΓэΒ 1×10^{32} cm⁻² sec⁻¹ (project) 4×10^{31} cm⁻² sec⁻¹ (achieved)
- Two detectors: SND and CMD-3

2010 - 2013 – experiments, 70 pb⁻¹ 2013 - 2016 – upgrade, new injector 2016 - now – experiments, 300 pb⁻¹

Since 2013 – beam energy measurements with laser Compton backscattering

SND data

~20 hadronic processes are currently under analysis

$e^+e^- \rightarrow \pi^+\pi^-$

The process $e^+e^- \rightarrow \pi^+\pi^-$ gives the largest contribution into $a_{\mu}^{had,LO-VP}$ and its error.

- ✓ There are many measurements of the e^+e^- → $\pi^+\pi^-$ process, some of them have systematic uncertainty less than 1%.
- ✓ The most precise measurements with a systematic uncertainty of about 0.6% were done by BABAR and KLOE using the ISR technique.
- ✓ However, the difference between the BABAR an KLOE cross sections reaches several %.

Experiments at VEPP-2000 use direct scan approach and may provide fully independent measurements with a sub-% accuracy.

 e/π separation parameter

JHEP 2021,113 (2021)

The analysis is based on 4.7 pb⁻¹ data recorded in 2013 (1/10 full SND data set)

Systematic uncertainty on the cross section (%)

Source	< 0.6 GeV	0.6 - 0.9 GeV
Trigger	0.5	0.5
Selection criteria	0.6	0.6
e/π separation	0.5	0.1
Nucl. interaction	0.2	0.2
Theory	0.2	0.2
Total	0.9	0.8

	SND @ VEPP-2000	SND @ VEPP-2M	PDG
M _ρ , MeV	775.3±0.5±0.6	775.6±0.4±0.5	775.3±0.3
$Γ_{ m ho}$, MeV	145.6±0.6±0.8	146.1±0.8±1.5	147.8±0.9
$B_{ ho ee} \times 10^5$	4.89±0.2±0.4	4.88±0.2±0.6	4.72±0.5
Β _{ωππ} , %	1.77±0.08±0.02	$1.66 \pm 0.08 \pm 0.05$	1.53±0.06

 $0.53 < \sqrt{s} < 0.88 \, \text{GeV}$

	$a_{\mu}(\pi^{+}\pi^{-}) imes 10^{10}$
SND & VEPP-2000	$409.8 \pm 1.4 \pm 3.9$
SND & VEPP-2M	$406.5 \pm 1.7 \pm 5.3$
BABAR	$413.6 \pm 2.0 \pm 2.3$
KLOE	$403.4 \pm 0.7 \pm 2.5$

Direct scan vs ISR

 $\sigma_{vis} = \int_{a}^{x_m} W(x, E) \sigma_b(\sqrt{E(1-x)}dx)$

In both methods, the integral equation should be resolved to obtain the Born cross section. \Box The function W(x,E) is well known theoretically The resolution function $R(M_m, M_t)$ is determined using simulation and tested at narrow resonances. The data –MC difference in the tails of the resolution is hard to be tested.

 $e^+e^- \rightarrow n\bar{n}$

- This process near threshold was previously measured by FENICE and SND using the 2011-2012 dataset.
- The new measurement is based on the 2017, 2019 data and uses time measurement in the calorimeter.
- The time distribution is fitted by a sum of distributions for signal, cosmic background, and beam + e⁺e⁻ annihilation background.
- Our new result is lower than the previous. The reasons are underestimated beam background and incorrect MC simulation.

Neutron electromagnetic form factors

From the measured cross section, we determine effective form factor

$$|F|^{2} = \frac{|G_{M}|^{2} + \frac{2m_{n}^{2}}{s}|G_{E}|^{2}}{1 + \frac{2m_{n}^{2}}{s}}$$

$$\sigma(e^+e^- \to n\bar{n}) = \frac{\alpha^2\beta}{4s} \left[|G_M|^2 (1 + \cos^2\theta) + \frac{4m_n^2}{s} |G_E|^2 \sin^2\theta \right]$$

From analysis of the antineutron polar-angle distribution we determine the ratio of the form factors

 $\rightarrow p \bar{p}$ *e* ' *e*

- This process near threshold was previously measured by BABAR and CMD3.
- Our measurement is based on the 2011-2012 data and uses energy deposition measurement in the drift chamber.

The number of DC layers with dEdx exceeding 2.5*dEdx of the electron

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section

EPJ C 80 (2020) 993

✓ Both SND measurements are consistent with each other and with the the BABAR measurement.
 ✓ Two peaks in the cross section corresponds to the ω' ≡ ω(1420) and ω'' ≡ ω(1650) resonances.
 ✓ The systematic uncertainty on the cross section is 4.4%.

The previous SND measurement [J. Exp. Theor. Phys. 121, 27 (2015)] is based on 2011 data set. The 2012 data set has been added.

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

- We analyze the two-dimensional distribution of the charged-pion momenta and the π⁺π⁻ mass spectrum.
- These distributions are fitted with a model including the $\rho\pi$, $\rho'\pi \equiv \rho(1450)\pi$, and $\omega\pi^0$ states.
- A significant fraction of the ρ'π intermediate state is observed in the energy region 1.55-1.75 GeV.

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

- ✓ The isovector intermediate state $\omega \pi^0$ gives sizable (up to 20%) contribution to the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section.
- ✓ The cross section for the intermediate state $\rho'\pi$ differs significantly from zero in the range 1.55 - 1.75 GeV, where the resonance ω'' is located.
- ✓ In the ρπ cross section the resonance structure near 1650 MeV is not seen.

We conclude that the $\rho'\pi$ intermediate state gives a significant contribution to the decay $\omega'' \rightarrow \pi^+\pi^-\pi^0$, and that the $\omega' \rightarrow \pi^+\pi^-\pi^0$ decay is dominated by the $\rho\pi$ intermediate state.

- The analysis is based on 26 pb⁻¹ data recorded in the c.m. energy range 1.27 2 GeV.
- The cross sections for the K*±K[∓] and φπ⁰ intermediate states are measured separately.
 The e⁺e⁻ → K*±K[∓] cross section is dominated by the φ' ≡ φ(1680) resonance.

The isovector process $e^+e^- \rightarrow \phi \pi^0$ is suppressed by the Okubo-Zweig-Iizuka (OZI) rule. Three measurements of the cross section are fitted simultaneously. The fit by a sum of the ρ' and ρ'' contributions cannot describe data near 1.6 GeV. The inclusion of an unknown resonance with m=1585±15 MeV and Γ =75±30 MeV improves fit. The significance of the structure is about 3 σ .

 $e^+e^- \rightarrow \eta \pi^0 \gamma$

EPJ C **80** (2020) 1008

- The process $e^+e^- \rightarrow \eta \pi^0 \gamma$ above 1.05 GeV is studied for the first time.
- Data set with IL \approx 100 pb⁻¹ recorded in 2010-2012 and 2017
- The five-photon final state is used.

 $e^+e^- \rightarrow \eta \pi^0 \gamma$

The measured $e^+e^- \rightarrow \omega\eta$ cross section is in good agreement with the SND and CMD-3 measurements in the $\omega \rightarrow \pi^+\pi^-\pi^0$ decay mode. g 60 DATA non- $\omega\eta$ 50 - FIT 30 20 10 -101.2 1.6 1.4 1.8 2 2E,GeV The non-VP $e^+e^- \rightarrow \eta \pi^0 \gamma$ process is observed with significance of 5.6σ . This is the first measurement of this cross section.

 $\rightarrow \eta\eta\gamma$ Cross section $e^+e^- \rightarrow \eta \eta \gamma$ 50 section [pb] preliminary This work 40 e⁺e⁻→φη (CMD-3) Cross: $e^+e^- \rightarrow V\eta \rightarrow \eta\eta\gamma$ 30 20 10 1.2 1.3 1.4 1.5 1.6 1.8 2E [GeV]

Upper limits on possible contribution of radiative intermediate states ($f_0(1500)\gamma$, $f'_2(1525)\gamma$) is set.

- The e⁺e⁻ → ηηγ cross section is measured for the first time in the energy range 1.17 – 2.0 GeV.
- The main intermediate state is $\phi \eta$.
- The measured cross section is consistent with CMD-3 result on $e^+e^- \rightarrow \phi \eta$, $\phi \rightarrow K^+K^-$.
- The contribution from intermediate states other than φη is not seen.

	preiminary
2E, GeV	95% CL Upper limit,pb
1.17-1.32	9
1.32-1.57	5
1.57-1.80	11
1.80-2.00	4

 $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

- The analysis is based on 35 pb⁻¹ data collected in 2011 2012.
- The measurement of the $e^+e^- \rightarrow \omega \pi^0$ process is the first step in the study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ reaction.
- Allows to study all sources of systematic uncertainties
- The $\omega \pi^{0}$ contribution is separated from other intermediate states ($a_{1}\pi$, $\rho^{+}\rho^{-}$, ...) by fitting the $\pi^{+}\pi^{-}\pi^{0}$ invariant-mass spectrum in the range 650 – 900 MeV.

 $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$

- The $\omega \pi^{o}$ cross section measured with the restriction M(3π) < 0.9 GeV is expected to be independent of the model for the ω line shape.
- The measured $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section is in agreement with previous measurements but has better accuracy.
- The cross section is fitted with the VMD model including three ρ-like states

Summary

✓ The SND detector accumulated 370 pb⁻¹ of integrated luminosity in the energy range 0.3 - 2 GeV.

✓ The $e^+e^- \rightarrow \pi^+\pi^-$ cross section has been measured in the energy range 0.53-0.88 GeV with a systematic uncertainty better than 1%.

✓ The accuracy of the $e^+e^- \rightarrow n\bar{n}$ measurement has been significantly improved. ✓ The preliminary results on the $e^+e^- \rightarrow p\bar{p}$ cross section has been obtained. ✓ The dynamics of the process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ has been studied in the energy range 1.15-2.0 GeV.

✓ The process $e^+e^- \rightarrow K^+K^-\pi^0$ has been studied in the $K^{*\pm}K^{\mp}$ and $\phi\pi^0$ intermediate states.

✓ Rare radiative processes $e^+e^- \rightarrow \eta \pi^0 \gamma$ and $\eta \eta \gamma$ have been measured in the energy range 1.05-2 GeV.

✓ The most precise measurement of the $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ cross section has been performed.

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter , 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

[NIM A449 (2000) 125-139] Calorimeter

- $13.5X_0, 0.95 \times 4\pi$
- Energy resolution $\frac{\sigma_E}{E} = \frac{0.042}{\sqrt[4]{E[GeV]}}$
- Angular resolution

 $\sigma_{\varphi} = \frac{0.82^{\circ}}{\sqrt{E[GeV]}} \oplus 0.63^{\circ}$ Tracking system

- 9 layers, $0.94 \times 4\pi$
- Angular resolution $\sigma_{\varphi} = 0.55^{\circ}, \sigma_{\theta} = 1.2^{\circ}$
- Vertex position resolution $\sigma_R = 0.12cm, \sigma_Z = 0.45cm$

Aerogel counters

• K/ π separation E < 1 GeV

E.V. Abakumova et al., PRL 110 2013 140402

$$a_{\mu}^{\text{had, LO-VP}} = \frac{\alpha^2 m_{\mu}^2}{9\pi^2} \int_{m_{\pi}^2}^{\infty} ds \frac{\hat{K}(s)}{s^2} R(s)$$
$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Contribution to the hadronic part of $(g-2)_{\mu}$ value from the VEPP-2000 energy region is about 92%:

The goal is to reach systematic error under 0.36% (now radiative correction to 0.2-0.4%, $e/\mu/\pi$ separation 0.1-0.5%, 0.3-0.6% pion decay and nuclear interaction).

 $a_{\mu}^{EXP} - a_{\mu}^{SM} = 3.6\sigma$