ATLAS Track and Vertex Reconstruction for Run-3 and High-Luminosity LHC

by Markus Elsing on behalf of the ATLAS Collaboration
Experience from Run-2 and Outlook

- **current ATLAS Inner Detector**
 - 4 Pixel layers, 4 double sided Strips, Transition Radiation Tracker
 - was upgraded in Long Shutdown-1 with 4th Pixel layer (IBL)
 - designed for excellent performance at pile-up of 23
 - during Run-2 operated routinely at pile-up well above 35

- preserving performance is a challenge!
 - tracking and vertexing needs to be robust against pile-up
 - CPU required for reconstruction increases rapidly with pile-up!

- **large radius tracking**
 - searches for long-lived particles!
 - significant CPU for additional tracking pass
 - not possible in Tier-0 during Run-2
 - required dedicated stream, processed on the Grid

ATLAS Preliminary Run 2 data reconstruction Run 6291

<table>
<thead>
<tr>
<th>Runtime (a.u.)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC Fill 6291</td>
<td>75</td>
<td>85</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **unconventional tracking topologies**
 - displaced multi-track vertices in ID + MET, jets, leptons
 - disappearing tracks
 - non-prompt photons
 - displaced leptons, lepton jets, or lepton pairs
 - emerging jets
 - trackless jets with low EMfrac
 - displaced multi-track vertices in Muon Spectrometer

- **Ambiguity resolution**
 - Track finder
 - Miscellaneous

Credit: Heather Russell
Outlook to Run-3 and HL-LHC

- **Run-3 expected av. pile-up is ~50**
 - double total integrated luminosity until 2025
 - end-of-lifetime of current Inner Detector

- **goal of LH-LHC is to collect 4 ab^{-1}**
 - average pile-up will rise to 140 to 200!
 - radiation levels and data rates unprecedented
 - ATLAS Inner Tracker (ITk) upgrade (all silicon)

- **a challenge !**
 - require excellent tracking performance, despite harsh pile-up environment
 - CPU for reconstruction and disk space needs will exceed computing budget extrapolations
 - computing technology becoming heterogenous, with many core CPUs and accelerators (GPU, FPGA)

- **tracking developments for Run-3 are also a preparation towards HL-LHC**
Run-2(3) Tracking and Vertexing Chain

pre-processing
- Pixel+SCT clustering
- TRT drift circle formation
- space points formation
Run-2(3) Tracking and Vertexing Chain

- **pre-processing**
 - Pixel+SCT clustering
 - TRT drift circle formation
 - space points formation

- **combinatorial track finder**
 - iterative:
 1. Pixel seeds
 2. Pixel+SCT seeds
 3. SCT seeds
 - restricted to roads
 - Brem.recovery in EM Regions-of-Interest

- **ambiguity solution**
 - runs hole search
 - scores tracks according to quality
 - NN cluster splitting in jets
 - precise least square fit with Brem.recovery
 - final selection cuts

- **extension into TRT**
 - progressive finder
 - refit of track with Brem.
 - scoring and selection cuts
Run-2(3) Tracking and Vertexing Chain

Pre-processing
- Pixel+SCT clustering
- TRT drift circle formation
- Space points formation

Combinatorial Track Finder
- Iterative:
 1. Pixel seeds
 2. Pixel+SCT seeds
 3. SCT seeds
- Restricted to roads
- Brem.recovery in EM Regions-of-Interest

Ambiguity Solution
- Precise fit and selection
- TRT seeded tracks

TRT Seeded Finder
- From TRT into SCT+Pixels
- Combinatorial finder

TRT Segment Finder
- In EM Regions-of-Interest
- On remaining drift circles
- Uses Hough transform

Extension into TRT
- Progressive finder
- Refit of track with Brem.
- Scoring and selection cuts
Run-2(3) Tracking and Vertexing Chain

Pre-processing
- Pixel+SCT clustering
- TRT drift circle formation
- Space points formation

Combinatorial Track Finder
- Iterative:
 1. Pixel seeds
 2. Pixel+SCT seeds
 3. SCT seeds
- Restricted to roads
- Brem. recovery in EM Regions-of-Interest

Ambiguity Solution
- Runs hole search
- Scores tracks according to quality
- NN cluster splitting in jets
- Precise least square fit with Brem. recovery
- Final selection cuts

Tracklet Finder
- Muon candidates \(|\eta| > 2.5\)
- Short tracks

Ambiguity Solution
- Precise fit and selection
- TRT seeded tracks

TRT Seeded Finder
- From TRT into SCT+Pixels
- Combinatorial finder

TRT Segment Finder
- In EM Regions-of-Interest
- On remaining drift circles
- Uses Hough transform

Extension into TRT
- Progressive finder
- Refit of track with Brem.
- Scoring and selection cuts
Run-2(3) Tracking and Vertexing Chain

vertexing
- primary vertexing
- conversion and V0 search

tracklet finder
- muon candidates $|\eta|>2.5$
- short tracks

ambiguity solution
- precise fit and selection
- TRT seeded tracks

TRT seeded finder
- from TRT into SCT+Pixels
- combinatorial finder

pre-processing
- Pixel+SCT clustering
- TRT drift circle formation
- space points formation

combinatorial track finder
- iterative:
 1. Pixel seeds
 2. Pixel+SCT seeds
 3. SCT seeds
- restricted to roads
- Brem.recovery in EM Regions-of-Interest

ambiguity solution
- runs hole search
- scores tracks according to quality
- NN cluster splitting in jets
- precise least square fit with Brem.recovery
- final selection cuts

extension into TRT
- progressive finder
- refit of track with Brem.
- scoring and selection cuts

TRT segment finder
- in EM Regions-of-Interest
- on remaining drift circles
- uses Hough transform
Run-2(3) Tracking and Vertexing Chain

Vertexing
- primary vertexing
- conversion and V0 search

Tracklet Finder
- muon candidates $|\eta|>2.5$
- short tracks

Ambiguity Solution
- precise fit and selection
- TRT seeded tracks

TRT Seeded Finder
- from TRT into SCT+Pixels
- combinatorial finder

Large Radius Tracking (LRT)
- as a additional iteration
 - combinatorial track finder, ambiguity solution, extension, secondary vertexing
 - different track selection strategy adopted to event topology

TRT Segment Finder
- in EM Regions-of-Interest
- on remaining drift circles
- uses Hough transform

Pre-processing
- Pixel+SCT clustering
- TRT drift circle formation
- space points formation

Combinatorial Track Finder
- iterative:
 1. Pixel seeds
 2. Pixel+SCT seeds
 3. SCT seeds
- restricted to roads
- Brem.recovery in EM Regions-of-Interest

Extension into TRT
- progressive finder
- refit of track with Brem.
- scoring and selection cuts

Ambiguity Solution
- runs hole search
- scores tracks according to quality
- NN cluster splitting in jets
- precise least square fit with Brem.recovery
- final selection cuts
Optimisation of Run-3 Tracking Software

- intensive development programme
 - software technology changed to multi-threading
 - optimisation of primary tracking:
 - stricter cuts: at least 8 hits and $|d_0| < 5$ mm
 - Back-Tracking and TRT optimised and seeded using EM calorimeter deposits with $E_T > 6$ GeV
 - seeding and pattern recognition tuning: stricter cuts, narrower roads, seed confirmation
 - novel primary vertex finder (first time using ACTS*)
 - apply optimisations also to Large Radius Tracking (LRT)

- $\times 4$ speedup for tracking at 90 pile-up
 - include faster LRT in Tier-0 reconstruction (all events)
 - huge simplification in computing model and reduction in storage
 - exiting prospects for searches!
 - Run-3 reconstruction overall $\times 2$ faster and improved selection reduces event size by 25%

* I'll come to ACTS later
Optimisation of Run-3 Tracking Software

- **effect on tracking performance**
 - CPU improvements largely due to early rejection of fakes and secondaries
 - Efficiency loss varies from 1% (4%) at high-(low-)p_T
 - N(hit) ≥ 8 for Run-3, compared to N(hit)≥7 for Run-2
 - Much more linear increase in number of tracks vs pile-up indicates improved pile-up robustness

- **primary tracking + LRT still >50% CPU**
New Run-3 Primary Vertex Reconstruction

- **change in vertex finding algorithm:**
 - Run-2: Iterative Primary Vertex Finder (IVF)
 - Run-3: Adaptive Multi-Vertex Finder (AMVF)

- **AMVF reconstruction strategy:**
 - novel gaussian track density vertex seed finder
 - tracks are associated to vertex candidates with weights according to their distance
 - vertex candidates share tracks and are fitted simultaneously

- **much improved pile-up performance:**
 - improved separation of nearby vertices along z
 - better efficiency for $t\bar{t}$ and VBF $H \rightarrow 4\nu$
 - 20% (10%) better resolution for $t\bar{t}$ (VBF $H \rightarrow 4\nu$)

- **AMVF implemented in ACTS* framework**
 - modern software yields 40% speedup in CPU!

* I'll come to ACTS later

Markus Elsing
The ATLAS HL-LHC Tracker (ITk) Upgrade

ATLAS Simulation Preliminary

ITk Layout: 23-00-03

η = 1.0

η = 2.0

η = 3.0

η = 4.0

Strip barrel

outer Pixel barrel

inner Pixels

Strip end-caps

outer Pixel end-caps
The ATLAS HL-LHC Tracker (ITk) Upgrade

- designed for fast precision tracking
 - 5 Pixel layers, 4 Strip layers (double-sided)
 - extends $|\eta|$ coverage from 2.5 to 4.0
 - improved granularity and hit redundancy
 - aims to minimise material in active tracking region
 - 5 layer ITk Pixel Detector with ring design:
 - efficient standalone seed finding in Pixels at all η
 - flexible Pixel ring placement:
 - keeps hit coverage constant in forward region
 - avoid large gaps between adjacent rings

- default ITk track reconstruction:
 - no TRT, hence simplified tracking chain
 - seed finding only in Pixels or in Strips, followed by track finder and ambiguity solution
 - significant speed-up of reconstruction at 200 pile-up, with excellent performance
ITk Tracking Performance (Default Tracking)

- high-purity track selection
 - raise N(hit) cut from 7 (Run-2) to 9 to further reduce fakes
- excellent tracking efficiency and fakes
 - pion efficiency limited by hadronic interactions in detector ITk material
 - excellent linearity in number of tracks vs pile-up, up to the highest pile-up

ATLAS Simulation Preliminary
ITk layout: 23-00-03
\(p_T > 1 \text{ GeV} \)

- Run 2 \(|\eta| < 2.4, \langle \mu \rangle = 38 \)
- ITk \(|\eta| < 2.4, \langle \mu \rangle = 200 \)
- ITk \(|\eta| < 4.0, \langle \mu \rangle = 200 \)

Efficiency vs Number of tracks vs pile-up

Efficiency vs Truth \(\eta \)

- \(p_T = 10 \text{ GeV} \)
- Single \(\mu \)
- Single \(e \)
- Single \(\pi \)

Efficiency vs Truth \(\eta \)

- Run-2, \(\langle \mu \rangle = 38 \)
- ITk, \(\langle \mu \rangle = 200 \)

Tracking efficiency (hadrons)

ATL-PHYS-PUB-2021-024
ITk Tracking Performance (Default Tracking)

- **much better impact parameter resolution**
 - in particular at high-\(p_T\) (less affected by multiple scattering)
 - Pixel pitch: 25x100 \(\mu\text{m}^2\) (layer-0 barrel), 50x50 \(\mu\text{m}^2\) (elsewhere)

- **results in improved performance for physics**
 - primary vertex reconstruction
 - b-tagging
 - pile-up jet rejection
 - ...

ATLAS Simulation Preliminary
\(\sqrt{s} = 14\text{ TeV}, \langle p_T \rangle > 1 \text{ GeV}\)
ITk layout: 23-00-03

Primary vertex reconstruction*
- AMVF
- IVF

* Run-2 reference is still IVF, ITk uses AMVF with an alternative vertex seed finder
Fast ITk Track Reconstruction Prototype

- **fast ITK tracking strategy**
 - drop Strip seeding iteration, rely on 5 layer Pixel seeding (!)
 - drop Ambiguity Solution, move functionality to Track Finding:
 - use Kalman Filter as final fit
 - precise cluster corrections
 - material model (approximate)
 - final track selection
 - duplicate removal (approximate)

- **excellent CPU results (8x faster)**
 - at cost of some performance
 - CPU for tracking not dominating in event reconstruction anymore
 - QCD generators and Geant4 dominate in total ATLAS CPU budget for HL-LHC (!)

- **new detector**
 - optimise tracking
 - require new detector

CPU needs
- ID Run-2 Reconstruction
- Default ITk Reconstruction
- Fast Track Reconstruction (ITk)

ATLAS Simulation Preliminary
- ITk Layout, tt events
- CPU needs

Run-2
- ATk
- ITk
- FullSim

EvGen

ATLAS Preliminary

2020 Computing Model - CPU: 2030: Conservative R&D

Markus Elsing

Notes:

- CPU needs
- New detector
- ITk Layout, tt events
- Fast Track Reconstruction (ITk)
- Optimization of tracking
- Event reconstruction
- Material model
- Final track selection
- CPU results (8x faster)
- QCD generators and Geant4 dominate

Graphs and Data:

- CPU budget breakdown
- Simulation types
- Fast Track Reconstruction
- ITk Layout
- Run-2

Markus Elsing

12
Performance of Fast ITk Reconstruction

● prototype yields excellent results, despite approximations to achieve CPU savings
 ➡ some efficiency loss in barrel, transition and forward region
 ➡ no large rate of additional (fake) tracks
 ➡ resolutions mostly as default reconstruction, with some exceptions due to approximations in Kalman Filter

● performance of fast ITk reconstruction already satisfies trigger requirements
 ➡ relevant for Event Filter reconstruction, possible alternative to hardware based tracking at Point-1
ACTS Tracking Software Project

- **ACTS (A Common Tracking Software)**
 - Open source project, initially started by ATLAS in view of HL-LHC
 - Number of experiments contributing and used as platform for R&D
 - sPHENIX, Belle-II, FASER, LHCb, CEPC, FCC, ...
 - Tracking Machine Learning (TrackingML) challenge
 - Open Data Detector (ODD) allows for generic tracking R&D

- **Tracking suite for ATLAS Phase-2 software**
 - Designed ground-up for multi-threading
 - Modern data model and code design
 - Support for heterogeneous architectures (CPU, GPU, ...)
 - Run-3 primary vertexing first deployment of ACTS code

- **Much improved technical performance (CPU)**
 - Use fast ACTS (Combinatorial) Kalman Filter to implement a fast ITk reconstruction without approximations
 - Goal is to fully recover physics performance without losing excellent CPU results of current prototype
Summary and Conclusions

● tracking and vertexing software is well prepared for Run-3
 ➔ based on Run-2 experience, significant improvements have been implemented
 • technical migration to multi-threading
 • reconstruction time reduced by more than a factor ×2
 • large radius tracking will be integrated into prompt reconstruction at Tier-0
 • new Adaptive Multi Vertex Finder deployed (ACTS based)

● tracking software preparation for HL-LHC is advancing well
 ➔ the ITk upgrade, together with optimised tracking software, will allow to improve on Run-2(3) tracking performance, even in presence of 200 pile-up
 ➔ fully functional fast ITk reconstruction cuts down CPU time for tracking by factor ×8, a game-changer for ATLAS Phase-2 offline computing and for trigger processing
 ➔ ATLAS is investing strongly into the ACTS open source tracking software project to modernise its tracking software for the HL-LHC