Electroweak transitions due to magnetic field: first-principle lattice results

Vladimir Goy, Alexander Molochkov, Maxim Chernodub,

Institut Denis Poisson, CNRS, Tours, France
Pacific Quantum Center, Vladivostok, Russia

Motivating question:
Vacuum instability in strong magnetic field background?

Partially supported by grant No. 0657-2020-0015 of the Ministry of Science and Higher Education of Russia.
What happens with the vacuum in strong magnetic field?

1) QCD scale, $B \sim 10^{16} \text{T}$, could proceed via the ρ meson condensation

 [M.Ch., PRD 80, 054503 (2009); PRL 106, 142003 (2011)]

 (possible weak crossover transition via inhomogeneous condensation of composite states, difficult to see — not this talk)

3) EW scale, $B \sim 10^{20} \text{T}$, could proceed via the W boson condensation

 [J. Ambjorn, P. Olesen, PLB 214, 565 (1988); NPB 315, 606 (1989)]

 (inhomogeneous condensation, looks easy and trivial — this talk)

not true, in fact
Free relativistic particle in magnetic field

Landau levels:

- scalar: \(E_n^2 = k_z^2 + (2n + 1)eH + m^2 \)
- spinor: \(E_n^2 = k_z^2 + (2n + 1)eH - 2eH \cdot s + m^2 \quad s = \pm \frac{1}{2} \)
- vector: \(E_n^2 = k_z^2 + (2n + 1)eH - 2eH \cdot s + m^2 \quad s = \pm 1, 0 \)

instability: \(eH_{crit}^{(1)} = m^2 \)

For W bosons (if we disregard interactions):

\[
B_{EW}^{c} = \frac{M_W^2}{e} \approx 1.1 \times 10^{20} \, \text{T}
\]

Electroweak vacuum should become unstable toward W condensation!

*) we use both H and B to denote magnetic field
Vacuum instability, what is the nature of the new phase?

... the one which is just about the (first) critical field.

1) Condensation of W bosons

 [J. Ambjorn, P. Olesen, PLB 214, 565 (1988); NPB 315, 606 (1989)]

2) Vacuum superconductivity

 [M.Ch., PRD 80, 054503 (2009)]

Vacuum should enter the new exotic phase which

a) is anisotropically superconducting

b) but does not possess Meissner effect

 (= magnetic field screening by a charged condensate)

Superconductivity of the vacuum is interesting and nontrivial phenomenon. The first step to establish the vacuum superconductivity is to make sure that

1) the vacuum instability towards the new phase exists;

2) the new phase has appropriate condensates (consistent with the theory);

→ aim of this work
What theory says about the phase structure?

(Weinberg-Salam model in strong magnetic field)

Lagrangian:

\[\mathcal{L} = -\frac{1}{4} W_{\mu\nu}^{a} W^{a,\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + (D_\mu \Phi)^\dagger (D^\mu \Phi) - \lambda \left(|\Phi|^2 - v^2 / 2 \right)^2 \]

\[D_\mu = \partial_\mu - ig \tau^a W_{\mu}^{a} / 2 - ig' X_\mu / 2 \]

\[W_{\mu\nu}^{a} = \partial_\mu W_{\nu}^{a} - \partial_\nu W_{\mu}^{a} + g \epsilon^{abc} W_{\mu}^{b} W_{\nu}^{c} \]

\[X_{\mu\nu} = \partial_\mu X_\nu - \partial_\nu X_\mu \]

Ordinary vacuum, symmetry breaking:

\[SU(2)_L \times U(1)_X \rightarrow U(1)_{em} \]
Superconducting phase, what to expect (theory)

Solution of classical equations of motion (at a set of Higgs masses)

W-boson condensate

Higgs condensate

Energy of the ground state

Density of superconducting “pairs”

Superconducting phase, inhomogeneity (theory)

\[B = 1.01 B_{c}^{EW} \]

W-boson condensate

Z-boson condensate

Higgs condensate

Superconducting phase, inhomogeneity (theory)

Vortex structure in superconducting (W) and superfluid (Z) condensates

Theoretical expectations based on classical equations of motion:

— Magnetic field leads to condensation of charged W bosons
— Condensation of the W’s leads to a condensation of neutral Z bosons

→ Coexisting superconducting and superfluid condensates

Visually (and distantly) similar but physically very different from the Abrikosov lattice in type-2 superconductors

Reality = classical picture + quantum fluctuations
(+ magnetic-field-induced vortex lattice will vibrate and generate phonon modes!)

Check the picture in first-principle lattice simulations

Gauge action

- vertex – fields
 \[\psi(x) \rightarrow \psi(x_i) \]

- edge (link) – gauge fields
 \[A_\mu \rightarrow U(L) = e^{ig_0 \int A_\mu \, dx^\mu} \]
 gauge transformation:
 \[U(L) \rightarrow g^{-1}(L_{end}) \, U(L) \, g(L_{begin}) \]

Wilson: \[S_W = \sum_{\text{plaquettes}} S_P, \text{ where } S_P = \beta \left(1 - \frac{1}{N} \text{Re} \, Tr \, U_P \right) \]
Electroweak theory on the lattice
— fermions play no essential role in the mechanism, we exclude them
— background hypermagnetic field = magnetic field in the broken phase

Dynamical fields:

\[U_{x,\mu} = \exp \left(i \frac{\sigma_i}{2} W_{x,\mu}^i \right) \in SU(2) \quad \theta_{x,\mu} \in \mathcal{R} \quad \phi_x = \begin{pmatrix} \phi_{1,x} \\ \phi_{2,x} \end{pmatrix} \]

\[S = \beta \sum_{x,\mu<\nu} \left(1 - \frac{1}{2} \text{Tr} \, U_{x,\mu\nu} \right) + \frac{\beta_Y}{2} \sum_{x,\mu<\nu} \theta_{x,\mu\nu}^2 \quad \text{(gauge)} \]
\[+ \sum_x \left(-\kappa \phi_x^\dagger \phi_x + \lambda \left(\phi_x^\dagger \phi_x \right)^2 \right) \quad \text{(Higgs)} \]
\[+ \sum_{x,\mu} \left| \phi_x - e^{i(\theta_{x,\mu} + \theta_{x,\mu}^B)} U_{x,\mu} \phi_{x+\mu} \right|^2 \quad \text{(interaction)} \]

Boundary condition: periodic
Magnetic field: along Z direction
Lattice size: \(64 \times 48^3 \)

Parameters: \(\beta, \beta_Y, \kappa, \lambda, \theta_{x,\mu}^B \).

Where is physical point?
Finding a physical point

\[e \approx 0.303 \quad m_H \approx 125.3 \text{ GeV} \]

\[g \approx 0.642 \quad m_Z \approx 91.2 \text{ GeV} \]

\[g' \approx 0.344 \quad m_W \approx 80.4 \text{ GeV} \]

\[\sin^2 \theta_W \approx 0.223 \]

\[
\beta = \frac{4}{g^2}, \quad \beta_Y = \frac{1}{g'^2} \equiv \frac{1}{g^2 \tan^2 \theta_W}
\]

\[\Rightarrow \beta = 4\beta_Y \tan^2 \theta_W \]

Our values: \(\beta_Y = 7, \beta = 8. \)

\[
\frac{m_Z^{ph.}}{m_H^{ph.}} = 0.7280
\]

\[m_H a = 0.3049(2) \quad m_Z a = 0.2237(3) \quad (\text{err. } < 1\%) \]

\[m_Z = 91.88 \pm 0.12 \]
Mean Higgs condensate in (hyper)magnetic field

\[m_H a = 0.3049(2) \]

1. We see two transitions: \(3.3(4) \times 10^{19} \text{ Tesla}\) and \(11.4(4) \times 10^{19} \text{ Tesla}\).

2. Transitions are smooth.

\[
\sqrt{g'H_c^{(1)}} = 48.0 \pm 2.4 \text{ GeV} \quad \sim (48.8 \pm 2.5)\% \cdot m_{W}^{(\text{our})}
\]

\[
\sqrt{g'H_c^{(2)}} = 88.4 \pm 1.3 \text{ GeV} \quad \sim (70.6 \pm 1.0)\% \cdot m_{H}
\]

Crossovers! (no real thermodynamical singularity)
Important role of quantum fluctuations

physical point

\[\beta = 8 \]

\[\beta = 20 \]

unphysical point (quantum fluctuations suppressed)

usual superconductor

VS

\[\leq \] Do not form a lattice
Number of vortices: \(\neq k \)
Hill VS pit

Deeper in phase with condensation exist lattice.

\[
\begin{align*}
\beta : 8 & \rightarrow 20 \\
\sin^2 \theta_W : 0.223 & \rightarrow 0.417 \\
\frac{m_Z}{m_H} & : 0.7335(9) \rightarrow 0.609(3)
\end{align*}
\]
Charged W condensate

\[\frac{1}{2} (W_x + W_y) \quad W_z \quad \frac{1}{2} (W_x + W_y) - W_z \]

physical point

\[\beta = 8 \]

unphysical point

- the new phase does appear indeed
- vortices do emerge in the vacuum
- the charged condensates do emerge (superconductivity?)
- but the vortices form a liquid (or gas) rather than the crystal lattice
- and the vortices are not of the Ambjorn-Olesen type
Neutral Z condensate

physical point

\(Z_x \) \(\beta = 8 \) \(Z_{xy} \) \(Z_z \)

unphysical point

at the unphysical point we do see good lattice structure
Vacuum structure: configurations

Higgs

standard broken phase

superconducting phase

symmetry restored phase

W boson

no lattice smearing, cooling or any other types of smoothening of configurations!
No vortex lattice

No clear vortex lattice at the physical point (at physical parameters)
No clear thermodynamic phase transition(s)

Along H

Perpendicular to H

Higgs susceptibility
Conclusions

1. We found the phase structure of zero-temperature electroweak theory in the magnetic-field background from first-principle lattice simulations.

2. The phase structure is (partially) consistent with theoretical predictions based on solutions of classical equations of motion.

3. Many differences with the theory, the role of quantum fluctuations is crucial:

 — vortices are not of the Ambjorn-Olesen type
 — no crystal lattice formation (of the Abrikosov type)
 — the vortices form either gas or liquid (fluctuating vortex medium)
 — the transitions are not phase transitions but the smooth crossovers (difficult/impossible to see from thermodynamics)

4. A similar phase in QCD at strong magnetic field? (no phase transition, a smooth appearance of the inhomogeneous phase).