Electroweak transitions due to magnetic field: first-principle lattice results

Vladimir Goy, Alexander Molochkov, Maxim Chernodub,

Institut Denis Poisson, CNRS, Tours, France Pacific Quantum Center, Vladivostok, Russia

Motivating question:

Vacuum instability in strong magnetic field background?

What happens with the vacuum in strong magnetic field?

- 1) QCD scale, B ~ 10^{16} T, could proceed via the ρ meson condensation [M.Ch., PRD 80, 054503 (2009); PRL 106, 142003 (2011)] (possible weak crossover transition via inhomogeneous condensation of composite states, difficult to see not this talk)
- 3) EW scale, B ~ 10²⁰ T, could proceed via the W boson condensation

 [J. Ambjorn, P. Olesen, PLB 214, 565 (1988); NPB 315, 606 (1989)]

 (inhomogeneous condensation, looks easy and trivial this talk)

Free relativistic particle in magnetic field

Landau levels:

scalar:
$$E_n^2 = k_z^2 + (2n+1)eH + m^2$$

spinor:
$$E_n^2 = k_z^2 + (2n+1)eH - 2eH \cdot s + m^2$$
 $s = \pm \frac{1}{2}$

vector:
$$E_n^2 = k_z^2 + (2n+1)eH - 2eH \cdot s + m^2$$
 $s = \pm 1, 0$

instability:
$$eH_{crit}^{(1)} = m^2$$

For W bosons (if we disregard interactions):

$$B_c^{\rm EW} = \frac{M_W^2}{e} \simeq 1.1 \times 10^{20} \, {\rm T}$$

Electroweak vacuum should become unstable toward W condensation!

Vacuum instability, what is the nature of the new phase?

... the one which is just about the (first) critical field.

1) Condensation of W bosons

[J. Ambjorn, P. Olesen, PLB 214, 565 (1988); NPB 315, 606 (1989)]

2) Vacuum superconductivity

[M.Ch., PRD 80, 054503 (2009)]

Vacuum should enter the new exotic phase which

- a) is anisotropically superconducting
- b) but does not possess Meissner effect

(= magnetic field screening by a charged condensate)

Superconductivity of the vacuum is interesting and nontrivial phenomenon. The first step to establish the vacuum superconductivity is to make sure that

- 1) the vacuum instability towards the new phase exists;
- 2) the new phase has appropriate condensates (consistent with the theory);
 - → aim of this work

What theory says about the phase structure?

(Weinberg-Salam model in strong magnetic field)

Lagrangian:

$$\mathcal{L} = -\frac{1}{4} W^a_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + (D_\mu \Phi)^{\dagger} (D^\mu \Phi) - \lambda \left(|\Phi|^2 - v^2/2 \right)^2$$

$$D_{\mu} = \partial_{\mu} - ig\tau^a W_{\mu}^a / 2 - ig' X_{\mu} / 2$$

$$W^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu + g\epsilon^{abc} W^b_\mu W^c_\nu$$

$$X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$$

Ordinary vacuum, symmetry breaking:

$$SU(2)_L \times U(1)_X \rightarrow U(1)_{\rm em}$$

Superconducting phase, what to expect (theory)

Solution of classical equations of motion (at a set of Higgs masses)

[Jos Van Doorsselaere, Henri Verschelde, M.Ch., Phys. Rev. D 88, 065006 (2013)]

Superconducting phase, inhomogeneity (theory)

[Jos Van Doorsselaere, Henri Verschelde, M.Ch., Phys. Rev. D 88, 065006 (2013)]

Superconducting phase, inhomogeneity (theory)

Vortex structure in superconducting (W) and superfluid (Z) condensates

[Jos Van Doorsselaere, Henri Verschelde, M.Ch., Phys. Rev. D 88, 065006 (2013)]

Visually (and distantly) similar but physically very different from the Abrikosov lattice in type-2 superconductors

Theoretical expectations based on classical equations of motion:

- Magnetic field leads to condensation of charged W bosons
- Condensation of the W's leads to a condensation of neutral Z bosons
- → Coexisting superconducting and superfluid condensates

Reality = classical picture + quantum fluctuations

(+ magnetic-field-induced vortex lattice will vibrate and generate phonon modes!)

Check the picture in first-principle lattice simulations

Gauge action

• vertex – fields $\psi(x) \rightarrow \psi(x_i)$

• edge (link) – gauge fields $A_{\mu} \rightarrow U(L) = e^{ig_{0} \int_{L} A_{\mu} dx^{\mu}}$

gauge transformation:

$$U(L) \rightarrow g^{-1}(L_{end}) U(L) g(L_{begin})$$

Wilson:
$$S_W = \sum_{plaquettes} S_P$$
, where $S_P = \beta \left(1 - \frac{1}{N}Re \ Tr \ U_P\right)$

Electroweak theory on the lattice

- fermions play no essential role in the mechanism, we exclude them
- background hypermagnetic field = magnetic field in the broken phase

Dynamical fields:

•
$$U_{x,\mu} = \exp\left(\imath \frac{\sigma_i}{2} W_{x,\mu}^i\right) \in \mathsf{SU}(2)$$

$$\bullet \; \theta_{\mathsf{x},\mu} \in \mathcal{R}$$

$$S = \beta \sum_{x,\mu<\nu} \left(1 - \frac{1}{2} \operatorname{Tr} U_{x,\mu\nu} \right) + \frac{\beta_{Y}}{2} \sum_{x,\mu<\nu} \theta_{x,\mu\nu}^{2} \quad (gauge)$$

$$+ \sum_{x} \left(-\kappa \phi_{x}^{\dagger} \phi_{x} + \lambda \left(\phi_{x}^{\dagger} \phi_{x} \right)^{2} \right)$$
 (Higgs)

$$+ \sum_{x} \left| \phi_{x} - e^{i \left(\theta_{x,\mu} + \theta_{x,\mu}^{B}\right)} U_{x,\mu} \phi_{x+\hat{\mu}} \right|^{2} \qquad (interaction)$$

Boundary condition: periodic

Magnetic field: along Z direction

Lattice size: 64×48^3

Parameters: β , β_Y , κ , λ , $\theta_{x,\mu}^B$.

Where is physical point?

Finding a physical point

$$e \approx 0.303$$
 $m_H \approx 125.3 \text{ GeV}$
 $g \approx 0.642$ $m_Z \approx 91.2 \text{ GeV}$
 $g' \approx 0.344$ $m_W \approx 80.4 \text{ GeV}$
 $\sin^2 \theta_W \approx 0.223$

$$\beta = \frac{4}{g^2}, \quad \beta_Y = \frac{1}{g'^2} \equiv \frac{1}{g^2 \tan^2 \theta_W}$$
$$\Rightarrow \beta = 4\beta_Y \tan^2 \theta_W$$

Our values: $\beta_Y = 7$, $\beta = 8$.

[Phys. Lett. B284 (1992) 371; Nucl.Phys. B544 (1999) 357]

Mean Higgs condensate in (hyper)magnetic field

$$m_H a = 0.3049(2)$$

- ① We see two transitions: $3.3(4) \times 10^{19} \, \mathrm{Tesla}$ and $11.4(4) \times 10^{19} \, \mathrm{Tesla}$.
- Transitions are smooth.

$$\sqrt{g'H_c^{(1)}} = 48.0 \pm 2.4 \text{ GeV} \sim (48.8 \pm 2.5)\% \cdot m_W^{(our)}$$
 $\sqrt{g'H_c^{(2)}} = 88.4 \pm 1.3 \text{ GeV} \sim (70.6 \pm 1.0)\% \cdot m_H$

Crossovers! (no real thermodynamical singularity)

Important role of quantum fluctuations

physical point

usual superconductor

 \leftarrow Do not form a lattice Number of vortices: $\neq k$ Hill VS pit 2k

Deeper in phase with condensation exist lattice.

$$\beta: 8 \rightarrow 20$$

$$\sin^2 \theta_W : 0.223 \rightarrow 0.417$$

$$\frac{m_Z}{m_H}$$
: 0.7335(9) \rightarrow 0.609(3) physical unphysical

unphysical point (quantum fluctuations suppressed)

Charged W condensate

- the new phase does appear indeed
- vortices do emerge in the vacuum
- the charged condensates do emerge (superconductivity?)
- but the vortices form a liquid (or gas) rather than the crystal lattice
- and the vortices are not of the Ambjorn-Olesen type

Neutral Z condensate

at the unphysical point we do see good lattice structure

Vacuum structure: configurations

No vortex lattice

No clear vortex lattice at the physical point (at physical parameters)

No clear thermodynamic phase transition(s)

Higgs susceptibility

Conclusions

- 1. We found the phase structure of zero-temperature electroweak theory in the magnetic-field background from first-principle lattice simulations
- 2. The phase structure is (partially) consistent with theoretical predictions based on solutions of classical equations of motion

- 3. Many differences with the theory, the role of quantum fluctuations is crucial:
 - vortices are not of the Ambjorn-Olesen type
 - no crystal lattice formation (of the Abrikosov type)
 - the vortices form either gas or liquid (fluctuating vortex medium)
 - the transitions are not phase transitions but the smooth crossovers (difficult/impossible to see from thermodynamics)
- 4. A similar phase in QCD at strong magnetic field? (no phase transition, a smooth appearance of the inhomogeneous phase).

