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What is non – dissipative transport?
(CME,CSE,CVE,QHE,AQHE, …)

Appearance of current (electric, axial, 
energy) that flows without dissipation. 

The conductivities of all known non –
dissipative transport phenomena are given 

by topological invariants. 



Why Wigner – Weyl? 

The bulk topological expressions for the 
conductivities of non – dissipative transport 

are known for the uniform systems. 

However, it is widely believed that the 
absence of spatial homogeneity does not 
affect robustness of the conductivities to 

smooth deformations of the systems. 



Why Wigner – Weyl? 

Example: 2D QHE without magnetic field 
(ideal topological insulator, uniform system):

QHE with magnetic field 

(the presence of disorder, and varying 
magnetic field,  non-uniform system):



Plan 

1. Equilibrium theory at zero temperature. 
- Applications to Quantum Hall Effect (QHE) and
- chiral  magnetic effect (CME) 
2. Equilibrium theory at nonzero temperature
Applications to Chiral Magnetic Effect (CME) 
3. Theory out of equilibrium
- Applications to QHE
4. Loop corrections to QHE
- Kinetic theory
- Equilibrium theory at T=0
5. Perspectives. The other non – dissipative
transport effects. 

- chiral separation effect (CSE)



1.
Wigner – Weyl calculus in continuum theory
Equilibrium, T=0

model with fermions

typical action

Green function



Wigner – Weyl calculus in continuum theory

average of an operator

it may be written as 

Weyl symbol of operator 



Wigner – Weyl calculus in continuum theory

Moyal product 

Weyl symbol of the product of two operators  

proof: 



Wigner – Weyl calculus in continuum theory

model with fermions

typical action

Green function

Groenewold equation



Lattice models 
Equilibrium, T=0

fermions live on 
the lattice sites

typical action
(Wilson fermions)



fermions live  on 
the lattice sites

Momentum space

For rectangular lattice 
Momentum space has 
the topology of torus



For rectangular lattice 
Momentum space has the 
topology of torus

Action in momentum space

For the case of Wilson 
fermions



Lattice models 

Example of Wilson 
fermions

In the presence of 
gauge field



Lattice models 

In the presence of 
gauge field

Action

Partition function



Approximate Wigner –
Weyl calculus for the lattice 
models

Weyl symbol of operator 
(momentum space)

Average of
operator

Density matrix 



Approximate Wigner – Weyl 
calculus for the lattice 
models

Weyl symbol of operator 
(momentum space)

Weyl symbol of the product 
of two operators

This identity is
approximate. It is valid for 
the near diagonal operators 



This identity is
approximate. 
It is valid for the near diagonal operators 

partition function

Action 
Lattice model for the description of electrons in 
crystals:  

The typical Lattice Dirac operator  Q is almost 
diagonal if the external magnetic field strength is 
much smaller than 10 000 Tesla while wavelength of 
external electromagnetic field is much larger than
1 nanometer  



This identity is
approximate. 
It is valid for the near diagonal operators 

partition function

Action 
Lattice model for the regularization of continuum 
quantum field theory:  

The typical Lattice Dirac operator  Q is almost 
diagonal when we approach continuum limit of the 
lattice model.



We can use the approximate Wigner – Weyl calculus 
dealing with any lattice regularized continuum 
quantum field theory and dealing with the lattice 
models of solid state physics if the external 
magnetic field strength is much smaller than 
10 000 Tesla while wavelength of external 
electromagnetic field is much larger than 
1 nanometer  



partition function

Action

Green
function 

Groenewold
equation

Moyal product

Electric current



Applications to Quantum Hall Effect 

Electric current orthogonal to electric field
in the presence of magnetic field

E

J
B

Geim, Novoselov, et all, Nature 438(7065):197-200 graphene



Quantum Hall Effect 

constant magnetic field, no interactions, no disorder
k is Bloch vector, 

|u(k)> is the eigenvector of 
Hamiltonian 

TKNN invariant
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs

Phys. Rev. Lett. 49, 405 (1982)



Applications to Quantum Hall Effect 

Electric current orthogonal to electric field
in the presence of magnetic field

electric
current
j

electric field E



Intrinsic Anomalous Quantum Hall Effect 
homogeneous system
no magnetic field
no interactions
no disorder

E

J

2D topological insulator

T. Matsuyama, Quantization of 

Conductivity Induced by Topological 

Structure of Energy Momentum Space in 

Generalized

QED in Three-dimensions, Prog. Theor. 

Phys 77, 711 (1987)



Applications to Quantum Hall Effect 
Equilibrium, T=0
non-homogeneous system               
Average electric current                            E

J

B

2+1 D:



Applications to Quantum Hall Effect 
Equilibrium, T=0

non-homogeneous system
Average electric current

3 + 1 D: 

E

J

B   



Quantum Hall Effect Equilibrium, T=0
non-homogeneous system

Average electric current
2+1 D:

smooth deformation of the system

the system without disorder, elastic deformations etc, 
with constant magnetic field

N is not changed! 
If N is known for less complicated system, we know it

also for the more complicated one



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T=0

Average electric current
3 + 1 D: 

D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang,
Progress in Particle and Nuclear Physics, Volume 88, 2016, Pages 1-28,



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T=0

Average electric current
3 + 1 D: 

topological invariant:

external magnetic field: 

C. Banerjee, M. Lewkowicz, M.A. Zubkov
Physics Letters B, 136457



Chiral magnetic effect Equilibrium, T=0
non-homogeneous system

Average electric current

smooth deformation of the system

the system without any inhomogeneity
M is not changed! 

We know that in homogeneous systems M = 0
Absence of equilibrium chiral magnetic effect, M.A. Zubkov

Physical Review D 93 (10), 105036

No CME in non – uniform systems at T=0



2.

Equilibrium, T>0

QHE: the need of kinetic 
theory (see below)

CME: the equilibrium 
theory may be used. 

C. Banerjee, M. Lewkowicz, 
M.A. Zubkov
Physics Letters B, 136457



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T>0

Average electric current

topological invariant:

Response of N to chiral chemical potential is zero  

No CME at T>0

The absence of CME at T>0 for homogeneous systems has been reported earlier in 
C.G. Beneventano, M. Nieto, E.M. Santangelo J. Phys. A, 53 (46) (2020), Article 465401, 



3.
Keldysh technique  
Green functions (lower sign for fermions)

Keldysh Green function



3.
Keldysh technique and Wigner – Weyl calculus. 
Keldysh Green function

=

Wigner transformation                   = 

Moyal product



Lesser representation

U=                      V = 

=

The inverse Q of Green function 

After Wigner transformation



In non – interacting systems

distribution function

In general case without interactions electric current 

product of triangle matrices is triangle matrix

lesser component for
any matrix is defined as 

A.Shitade, J. Phys. Soc. Jpn. 86, 054601 (2017)



Response of electric current to external field 
strength

Electric conductivity tensor for non – homogeneous 
systems

C Banerjee, IV Fialkovsky, M Lewkowicz, CX Zhang, MA Zubkov
arXiv preprint arXiv:2009.10704



2D Hall conductivity
“Topological part” 

contour in complex plane of 𝝅𝟎

in the case of thermal equilibrium at T->0

Matsubara Green function 
𝑮𝑴 (𝒘𝒆 𝒓𝒆𝒑𝒍𝒂𝒄𝒆 𝒊𝒏𝒔𝒊𝒅𝒆 𝑮𝑹 ∶ 𝝅𝟎 → 𝒊 𝝎)

C Banerjee, IV Fialkovsky, M Lewkowicz, CX Zhang, MA Zubkov,  arXiv:2009.10704

A similar expression has been obtained independently in F.R. Lux, F. Freimuth, S. Bl ̈ugel, 

Y. Mokrousov, Physical Review Letters 124 (9), 096602 (2020)



2D Hall conductivity

“non - topological part” 

ordinary symmetric conductivity



4.
Interaction corrections to electric conductivity

the exchange by bosonic excitation with propagator
D(P), and interaction vertex 1, one loop 

C Banerjee, IV Fialkovsky, M Lewkowicz, CX Zhang, MA Zubkov,  arXiv:2009.10704



Interaction corrections to electric conductivity

If there is symmetry under cyclic permutation of 
operators under the trace, then one – loop 
contribution to antisymmetric (Hall) component of 
conductivity vanishes. This occurs, for example, if 

the initial distribution of fermions 𝒇 𝝅𝟎 is Fermi 

distribution with T → 0, and chemical potential is 
inside the gap. 
Thus in equilibrium at zero temperature there are no 
one – loop interaction corrections to Hall 
conductivity. 



The absence of interaction corrections to  
Quantum Hall Effect 

equilibrium, T=0

Electric current orthogonal to electric field
in the presence of magnetic field

E

J

B



The absence of interaction corrections to  
Quantum Hall Effect 

Electric current orthogonal to electric field
in the presence of magnetic field

as an example:

without interactions:



Gedankenexperiment:
we consider the system on the torus

and divide it into the two pieces



we consider the system on the torus
and divide it into the two pieces

is zero in the part II, E(I) = - E(II)

We prove that the total current remains 
zero with the interaction corrections

no interaction corrections



is zero in the part II, E(I) = - E(II)

an example: 1-loop  
=0



an example: 1-loop diagram

=    2                                    

=0



In the presence of interactions the sum of the currents 
in the two pieces is zero ➔ the electric conductivity 

receives no corrections in the part I



Another example of diagram technique 



5.

Wigner – Weyl calculus may also be
used for the investigation of the other
non – dissipative transport 
phenomena. 

An example is

Chiral Separation Effect



Axial current along magnetic field

in the presence of chemical potential

A. Metlitski and Ariel R. Zhitnitsky,Phys. Rev. D 72 (2005), 045011

D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang,
Progress in Particle and Nuclear Physics, Volume 88, 2016, Pages 1-28,



Lattice Dirac operator Q is 4 x 4 matrix 

expressed through the Gamma matrices

The system with Fermi surface of arbitrary complicated form

Fermi surface of gold

from

http://exciting.wikidot.com/nitrogen-fermisurface



Lattice Dirac operator Q is 4 x 4 matrix 

expressed through the Gamma matrices

The system with Fermi surface of arbitrary complicated form

Surface          surrounds the singularities

of  

𝛾5 commutes/anticommutes with Q 

in small vicinity  of  

M.Suleymanov, M.Zubkov, Physical Review D 102 (7), 076019



Lattice Dirac operator Q is 4 x 4 matrix 

expressed through the Gamma matrices

The system with Fermi surface of arbitrary complicated form

Irrespective of the form of the Fermi surface the value of 

is equal to the number of chiral 

4 – component Dirac fermions  

M.Suleymanov, M.Zubkov, Physical Review D 102 (7), 076019



Conclusions

• Wigner – Weyl calculus allows to represent in 

compact form the conductivities of non –

dissipative transport phenomena in non –

uniform systems.

• Equilibrium systems at zero temperature: QHE 

conductivity is given by topological invariant 

composed of the Wigner transformed two-point 

Green functions. 

• Equilibrium systems at finite temperatures: CME 

response of electric current to magnetic field is 

the topological invariant in phase space. 



Conclusions

• Non – equilibrium systems, Keldysh technique 

and Wigner – Weyl calculus allow to express in 

compact form electric conductivity. 

• Out of equilibrium already in one loop the 

interaction corrections to Hall conductivity do not 

vanish. In equilibrium theory at zero temperature 

these corrections disappear to all orders. 

• This technique may be applied also to the other 

non – dissipative transport effects, say, to CSE. 


