10th International Conference on New Frontiers in Physics (ICNFP 2021)

Contribution ID: 210

Type: Poster presentation

Towards sympathetic cooling of antiprotons through laser-cooling of trapped anionic molecules

Thursday, 7 October 2021 18:40 (5 minutes)

A successful cooling of anionic C2- would open up novel experiments based on sympathetic cooling of antiprotons and other anionic systems to sub-Kelvin temperatures. C2- and other anionic molecules produced in an electric discharge in an Even-Lavie valve are accelerated to 1.8 keV in a pulsed electric field; the C2- is then mass selected in a Wien filter. Subsequent deceleration in the static electric field of a deceleration tube with a potential difference of 1.8 kV reduces the energy of the particles to a trappable range. A self-built Paul trap on the same 1.8 kV potential stores the C2- molecules for subsequent experimentation with cooling lasers.

Is this abstract from experiment?

Yes

Name of experiment and experimental site

Borealis, CERN

Is the speaker for that presentation defined?

Yes

Details

Emanuel David Oswald, MSc, CERN, Switzerland, www.cern.ch

Internet talk

Yes

Primary author: OSWALD, Emanuel David (University of Innsbruck (AT))

Co-author: DOSER, Michael (CERN)

Presenter: OSWALD, Emanuel David (University of Innsbruck (AT))

Session Classification: Poster Session