Ambiguities in the hadro-chemical freeze-out of Au+Au collisions at SIS18 energies and how to resolve them

Anton Motornenko

based on: arXiv:2104.06036 [hep-ph]

Frankfurt Institute for Advanced Studies

In collaboration with: Jan Steinheimer, Volodymyr Vovchenko, Reinhard Stock, Horst Stöcker

August 31, 2021 10th International Conference on New Frontiers in Physics

QCD phase diagram

J. Adamczewski-Musch et al. (HADES), 1703.08418 J. Adamczewski-Musch et al. (HADES), 1812.07304 M. Szala (HADES), ECT* workshop, 2019 J. Adamczewski-Musch et al. (HADES), 2005.08774

J. Adamczewski-Musch et al. (HADES), 1703.08418 J. Adamczewski-Musch et al. (HADES), 1812.07304 M. Szala (HADES), ECT* workshop, 2019 J. Adamczewski-Musch et al. (HADES), 2005.08774

A. Motornenko et al., 2104.06036

Allows to map the experimental data

to thermodynamic properties

Iusch et al. (HADES), 1703.08418 Iusch et al. (HADES), 1812.07304 ECT* workshop, 2019 Iusch et al. (HADES), 2005.08774

3/16

J. Adamczewski-Musch et al. (HADES), 1703.08418 J. Adamczewski-Musch et al. (HADES), 1812.07304 M. Szala (HADES), ECT* workshop, 2019 J. Adamczewski-Musch et al. (HADES), 2005.08774

Treatment of light nuclei is important:

- either $N_p = N_{p \text{ unbound}} + N_p(d) + N_p(^{3}\text{He}) + N_p(^{3}\text{H})$
- either d,³He, ³H are separate degrees of freedom

Anton Motornenko, 2104.06036

Ambiguities in the freeze-out: double minima

J. Adamczewski-Musch et al. (HADES), 1703.08418 J. Adamczewski-Musch et al. (HADES), 1812.07304 M. Szala (HADES), ECT* workshop, 2019 J. Adamczewski-Musch et al. (HADES), 2005.08774

Anton Motornenko, 2104.06036

Thermal fit to the hadron yields has two degenerate solutions.

- Which solution to choose?
- Higher T solution was not found in *Harabasz et al.*
- No freeze-out at all?

Ambiguities in the freeze-out: double minima

Anton Motornenko, 2104.06036

Ambiguities in the freeze-out: double minima

J. Adamczewski-Musch et al. (HADES), 1703.08418 J. Adamczewski-Musch et al. (HADES), 1812.07304 M. Szala (HADES), ECT* workshop, 2019 J. Adamczewski-Musch et al. (HADES), 2005.08774 Two minima have completely different resonance content.

At the higher temperature more than 70% of pions come from the resonance decays.

Ambiguities in the freeze-out: light nuclei

Ambiguities in the freeze-out: all scenarios

Three scenarios:

- **no clusters** light nuclei are formed after the chemical freeze-out, thus are omitted from the thermal model particle list. Protons that later-on bind into the light nuclei are counted as 'free'
- **clusters included** light nuclei are formed at the chemical freeze-out. Only stable light nuclei are included in the thermal model particle list.
- clusters and decays of unstable nuclei the • model includes the feeddown from the decays of *unstable* A = 4, and A = 5 nuclei to the final yields of protons, deuterons, tritons, ³He, and ⁴He at the chemical freeze-out

(Vovchenko et al., 2004.04411).

Fit with light nuclei as separate degrees of freedom:

- Single minima
- Data is **poorly descried**, **x**²/ndf > 10

Ambiguities in the freeze-out: all scenarios

Three scenarios:

- no clusters light nuclei are formed after the chemical freeze-out, thus are omitted from the thermal model particle list. Protons that later-on bind into the light nuclei are counted as 'free'
- **clusters included** light nuclei are formed at the chemical freeze-out. Only stable light nuclei are included in the thermal model particle list.
- clusters and decays of unstable nuclei the model includes the feeddown from the decays of unstable A = 4, and A = 5 nuclei to the final yields of protons, deuterons, tritons, ³He, and ⁴He at the chemical freeze-out, (Vovchenko et al., 2004.04411).

• Good description, arbitrary T possible Which T to choose?

- Poor description, single minimum
 Another mechanism for light nuclei
 formation should be considered.
- Improved description, single minimum **Perhaps this scenario can be improved?..**

Ambiguities in the freeze-out: all scenarios

Three scenarios:

- no clusters light nuclei are formed after the chemical freeze-out, thus are omitted from the thermal model particle list. Protons that later-on bind into the light nuclei are counted as 'free'
- **clusters included** light nuclei are formed at the chemical freeze-out. Only stable light nuclei are included in the thermal model particle list.
- clusters and decays of unstable nuclei the model includes the feeddown from the decays of unstable A = 4, and A = 5 nuclei to the final yields of protons, deuterons, tritons, ³He, and ⁴He at the chemical freeze-out, (Vovchenko et al., 2004.04411).

Good description, arbitrary T possible Which T to choose?

- Poor description, single minimum Another mechanism for light nuclei formation should be considered.
- Improved description, single minimum **Perhaps this scenario can be improved?..**

Resolving ambiguities: freeze-out in UrQMD

UrQMD predictions for particle yields in Au+Au@ $\sqrt{s_{NN}} = 2.4 \text{ GeV}$ can be used as input to thermal model.

More stable hadrons in the fit — possibility for a unique solution.

UrQMD 3.4 extended with up-to-date resonance branching ratios works well in the HADES energy regime. Inclusion of density-dependent nuclear potentials is essential.

G. Graef et al., 1409.7954 J. Steinheimer et al., 1503.07305 P. Hillmann et al., 1802.01951

F. Seck et al.,2010.04614

Anton Motornenko, 2104.06036

UrQMD prediction for particle yields **reproduces the double-minimum structure** for the fit to the measured ($\pi^{+,-}$, K^{+-} , p, Λ) yields.

UrQMD prediction for particle yields **reproduces the double-minimum structure** for the fit to the measured ($\pi^{+,-}$, K⁺⁻, p, Λ) yields.

The fit to all stable hadron yields **favors higher T minimum**.

UrQMD prediction for particle yields **reproduces the double-minimum structure** for the fit to the measured ($\pi^{+,-}$, K⁺⁻, p, Λ) yields.

The fit to all stable hadron yields **favors higher T minimum**...

However, it's very sensitive to the yield of the scalar η meson which is very temperature-sensitive.

UrQMD prediction for particle yields **reproduces the double-minimum structure** for the fit to the measured ($\pi^{+,-}$, K⁺⁻, p, Λ) yields.

The fit to all stable hadron yields **favors higher T minimum**...

However, it's very sensitive to the yield of the scalar η meson which is very temperature-sensitive.

If the best fit depends strongly on the choice of included hadron multiplicities, perhaps, there is no universal chemical freeze-out?..

How do the minima reveal themself during the fireball evolution? Perhaps they appear one after another?

The evolution can be tracked by **fitting time-dependent particle yields** extracted from UrQMD (*Steinheimer et al., 1603.02051*):

- the UrQMD evolution is stopped at time **t**
- all unstable hadrons are forced to decay
- the calculated hadron yields are related to time *t*

Fit to time-dependent particle yields allows to extract thermodynamic properties at each time *t*.

100 (a) (MeV) UrQMD Au + Au $\sqrt{s_{NN}} = 2.4 \text{ GeV}$ 50 b < 4.7 fm coarse grained 1200 (b) high T minimum µ_B (MeV) low T minimum 1000 800 C 10⁰ n_B (fm⁻³) 10^{-} 10-2 10^{-3} (d)10 S/A 5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 t (fm/c)

Anton Motornenko, 2104.06036

The double minimum structure in the fit is found throughout the whole evolution.

The high temperature minimum behaves as "classical" picture of the fireball evolution:

temperature and density (chemical potential) decrease with time as a result of the fireball cooling during the expansion.

The low temperature minimum seems to violate the second law of thermodynamics:

total entropy per baryon strongly decreases with time $\Delta S/A(t) < 0$, temperature increases, density decreases

The double minimum structure in the fit is found throughout the whole evolution.

The high temperature solution — "classical" picture of the fireball evolution:

temperature and density (chemical potential) decrease with time as a result of the fireball cooling during the expansion.

The low temperature minimum seems to violate the second law of thermodynamics:

total entropy per baryon strongly decreases with time $\Delta S/A(t) < 0$, temperature increases, density decreases.

The low temperature solution behaves unphysically!

Anton Motornenko, 2104.06

14 / 16

Anton Motornenko, 2104.06

One shouldn't forget: Heavy ion collision is a very complex system where thermal model description is a very rude approximation.

10

t (fm/c)

20

20

15

max

Summary

- Thermal model can not uniquely describe freeze-out at SIS18 energies:
 two degenerate x² minima are present
- Description of light nuclei at the freeze-out is unsatisfactory
 ... possible room for improvement
- Analysis of **UrQMD** data yields the **same degenerate x² minima**
- Additional not-yet-measured hadrons do not allow to discern the minima
 unstable hadronic species may be helpful, but technical (Motornenko, 1905.00866)
- A detailed study of the time evolution of the particle yields suggests that only the high T solution behaves physically, low T solution should be disregarded

Heavy ion collision is a complex dynamical system, simple approach like thermal model is not capable for all the details

Summary

- Thermal model can not uniquely describe freeze-out at SIS18 energies:
 two degenerate x² minima are present
- Description of light nuclei at the freeze-out is unsatisfactory
 ... possible room for improvement
- Analysis of **UrQMD** data yields the **same degenerate x² minima**
- Additional not-yet-measured hadrons do not allow to discern the minima
 unstable hadronic species may be helpful, but technical (Motornenko, 1905.00866)
- A detailed study of the time evolution of the particle yields suggests that only the high T solution behaves physically, low T solution should be disregarded

Heavy ion collision is a complex dynamical system, simple approach like thermal model is not capable for all the details

Thank you for the attention!