10th International Conference On New Frontier In Physics (ICNFP 2021)

Vector-boson Scattering, Diboson And Triboson Production at ATLAS

VALLARY BHOPATKAR
On behalf of ATLAS Collaboration

ATL-PHYS-PUB-2021-032

- Through electroweak Boson self-interaction multi-boson can provide unique probe of standard model
- Precious test of higher order prediction
 - Higher order corrections important at higher center of mass energy
- Search for the Beyond Standard Model
 - Many process acts as a background for many direct BMS searches
 - Important to measure them precisely
- Differential Fiducial cross-section measurements
 - W+W- + ≥ 1 Jets Production <u>JHEP 06 (2021) 003</u>
- Observation and cross-section measurements
 - -Z(→ $\ell\ell$) γjj Production <u>ATLAS-CONF-2021-038</u>
 - $-Z(→ ν\bar{ν})γjj$ Production EXOT-2021-17

- Triboson Measurements
 - WWW results ATLAS-CONF-2021-039

W+W- + ≥ 1 Jets Inclusive Measurements

- The fiducial and differential cross-section measurements
 - First time at LHC, differential measurements performed in jet-inclusive phase space
- Provides stringent test of theoretical prediction
 - Perturbative QCD
 - Higher order EWK corrections
- Measurements are performed by selecting on opposite sign eµ pair along with at least one hadronic jet
- Sensitivity to triple gauge coupling vertex

JHEP 06 (2021) 003

W+W- + ≥ 1 Jets Analysis Strategies

- Event selection criteria
 - Considered eu channel only
 - Kinematic cuts selected to match the fiducial region
 - b-jet veto to reduced large top background
 - $-m_{e\mu}$ > 85 MeV to suppress Drell-Yan background as well as H→WW resonance
- Background Estimation
 - Dominated by Top background
 - $t\bar{t}$ is estimated with data-driven method
 - Consider 2 control region with 1btag and 2btag
 - Drell-Yan background is estimated using the MC samples
 - Fake leptons also estimated using the data-driven method
 - Single top and diboson background estimated using MC (Sherpa) Samples

Fiducial Cross-Section

JHEP 06 (2021) 003

$$\sigma_{\text{fid}}$$
 = 258 ± 4 (stat.) ± 25 (syst.) fb

10% total uncertainty

Fix-order NLO prediction with Sherpa,
 Madgraph and Powheg generators are consistent with theory prediction

Fiducial selection requirements

$$p_{\rm T}^{\ell} > 27 \,{\rm GeV}$$
 $|\eta^{\ell}| < 2.5$
 $m_{e\mu} > 85 \,{\rm GeV}$
 $p_{\rm T}^{j} > 30 \,{\rm GeV}$
 $|y^{j}| < 4.5$

Differential Cross-section

JHEP 06 (2021) 003

- Differential cross-section is measured with different kinematic variables
- Good agreement with MC prediction and
- Measurements with higher momentum for NLO EW correction
- Higher sensitivity to aTGCs

EFT in W⁺W⁻+ ≥ 1 Jets: dim-6 operators

JHEP 06 (2021) 003

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + \sum_i C_i^{(6)} \mathcal{O}_i^{(6)} + \sum_i C_i^{(8)} \mathcal{O}_i^{(8)} + \cdots$$

- Final state sensitive to dim-6 Q_w variable
- m_{eµ} used as a discriminant in an enhanced p_T > 200 GeV jet phase space
- C_w coefficient is constraint
- In addition to these studies ATLAS has published combined EFT interpretation results of differential cross-section measurements of WW, WZ, 4I, and Z+ jj production <u>ATL-PHYS-PUB-2021-022</u>

Jet p _T	Linear only	68% CI obs.	95% CI obs.	68% CI exp.	95% CI exp.
> 30 GeV	yes	[-1.64, 2.86]	[-3.85, 4.97]	[-2.30, 2.27]	[-4.53, 4.41]
> 30 GeV	no	[-0.20, 0.20]	[-0.33, 0.33]	[-0.28, 0.27]	[-0.39, 0.38]
> 200 GeV	yes	[-0.29, 1.84]	[-1.37, 2.81]	[-1.12, 1.09]	[-2.24, 2.10]
> 200 GeV	no	[-0.43, 0.46]	[-0.60, 0.58]	[-0.38, 0.33]	[-0.53, 0.48]

Production $Z(\rightarrow \ell\ell)\gamma jj$

- Powerful test to the standard model (SM) for its sensitivity to the gauge self-interaction
- Provides opportunity to explore vector boson scattering (VBS), which directly probe the electroweak symmetry breaking of the SM as well as can extract the constraints on anomalous gauge coupling
- Electroweak production of the Zγjj final state contains both VBS and non-VBS process
- When initial and final states of the $Z\gamma$ production are same then the production mechanism with EWK and QCD interference
- Observation and cross-section measurements of EW-Zγjj with 139 fb⁻¹ Run-II data is presented
 - Z boson decays to wither e⁻e⁺ or μ⁻μ⁺

EWK Production $Z(\rightarrow \ell\ell)\gamma jj$

Analysis Strategy

 Events selection by defining phase is applied at particle level

$p_{ m T}^{\ell} > 20, 30 ({ m leading}) \ { m GeV}, \eta_{\ell} < 2.47$
$N_\ell \geq 2$
$E_{\mathrm{T}}^{\gamma} > 25 \mathrm{GeV}, \eta_{\gamma} < 2.37$
$E_{\mathrm{T}}^{cone20} < 0.07 E_{\mathrm{T}}^{\gamma}$
$\Delta R(\ell, \gamma) > 0.4$
$p_{\rm T}^{jet} > 50 \text{ GeV}, y_{jet} < 4.4$
$ \Delta y > 1.0$
$m_{jj} > 150 \text{ GeV}$
remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$
$m_{\ell\ell} > 40 \mathrm{GeV}$
$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$
$\zeta(\ell\ell\gamma) < 0.4$
$N_{jets}^{gap} = 0$

- Cuts on the centrality (ζ) of the $\ell^+\ell^-\gamma$ system defines the Signal and Control Regions
 - SR (ζ <0.4) and QCD CR (ζ >0.4)

Background Estimation

- Main source of background: Zγjj events from QCD induced process i.e. QCD- Zγjj
 - Shape estimated from MC and normalization factor determined from the final fit
- Second largest background comes form Z+jet
 - Estimated with data driven method
- $t\bar{t}\gamma$ events estimated using MC samples
 - scaled factor is derived by comparing the prediction with the data using an eμγ events
- Other small backgrounds estimated using MC

m_{jj} Distribution in SR and CR

Events beyond the upper limit of the histogram are included in the last bin

Cross-section of Production $Z(\rightarrow \ell\ell)\gamma jj$

- Measured signal strength
 - $-\mu_{EW} = 0.95 \pm 0.08 \text{ (stat)} \pm 0.11 \text{ (syst)}$
- Observed significance of 10σ, whereas expected is 11σ
- Fiducial cross-section in the EWK $pp \rightarrow Z\gamma jj$ in the phase space
 - $-\sigma_{EW}=4.49\pm0.40~(\mathrm{stat})\pm0.42(\mathrm{syst})~\mathrm{fb}$ with overall 13% uncertainty
 - Results are consistent with the predicated crosssection using the MadGraph5 interfaced with Pythia8
- The total cross-section of $(EW + QCD) Z\gamma jj$ is obtained with the precision of 7%
 - $-\sigma_{EW+OCD} = 20.6 \pm 0.6(stat)_{-1.0}^{+1.2}(syst)$ fb

ATLAS-CONF-2021-038

EXOT-2021-17

Production of $Z(\rightarrow \nu \bar{\nu}) \gamma jj$

- The first observation measurement of production of $Z(\rightarrow \nu\bar{\nu})\gamma jj$ with 5.2(5.1) σ significance
- Backgrounds are constraint during the final fit with defining the multiple control regions
- In the signal regions all events with leptons are vetoed
- Measured signal strength

$$\mu_{FW} = 1.03 \pm 0.25$$

Measured fiducial cross-section:

$$\sigma^{fid}_{Z(\rightarrow
u ar{
u}) \gamma EW} =$$
 1.31 \pm 0.2 (stat) \pm 0.2 (syst) fb

 Analysis also set limits on the invisible Higgs decay

Triboson Production at LHC

- Evidence and observations of the combined triboson channels are reported by ATLAS and CMS experiments
 - Evidence for production of massive vector boson with ATLAS detector
 - ATLAS 80 fb⁻¹: WVV 4.1σ, WWW 3.2σ
 - CMS 137 fb⁻¹ : VVV 5.7σ, WWW 3.3σ
- Now with full Run II 139 fb⁻¹ data ATLAS experiment achieved observation results in stand alone WWW channel

New Results: ATLAS 139 fb⁻¹ WWW 8.2σ

ATLAS-CONF-2021-039

J. Physics Letter B .2019.134913

Phys. Rev. Lett. 125, 151802

WWW Production

Using Run II ATLAS Data: $W^{\pm}W^{\mp}W^{\mp} \rightarrow l\nu l\nu jj (l\nu l\nu l\nu)$

- During Run II analysis, WWW production is measured using two final states:
 - Two lepton channel: $W^{\pm}W^{\mp}W^{\mp} \rightarrow l^{\pm}\nu l^{\pm}\nu jj$
 - It only includes same-sign leptons (ee, e μ , $\mu\mu$) and two jets from the third W bosons
 - Three lepton channel: $W^{\pm}W^{\mp}W^{\mp} \rightarrow l^{\pm}\nu l^{\mp}\nu l^{\mp}\nu$
 - · It includes zero same flavor opposite sign lepton pairs

 The signal events includes events from WWW along with WH events contributing from the 3rd Feynman diagram

- Background includes WZ, Nonprompt, γ- conversion, and charge flip
- 2 lepton channel: More statistics but also large background
 - Dominated by WZ, γ- conversion and followed by other backgrounds
- 3 lepton channel: Relatively small background but is statistically limited
 - Dominated by non-prompt background

Analysis Strategy

ATLAS-CONF-2021-039

- Analysis is dominated by the WZ background
 - Data-driven method is used to estimated the WZ normalization scale factors
 - There are three WZ control region based on the jet multiplicity i.e. 0j, 1j and ≥ 2j
 - Separate normalization factor used for each control region
- Machine learning techniques are used to increased the signal sensitivity
 - Boosted Decision Trees (BDT) is used to fit the signal and control region simultaneously
 - For BDT training:
 - 2 lepton channel: includes 12 variables
 - 3 lepton channel: includes 11 variables

BDT variables (ordered by importance)

2ℓ	3ℓ
$ m_{jj}-m_W $	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$
$p_{\rm T}$ (forward jet)	$p_T(\ell_2)$
$E_{\rm T}^{\rm miss}$ significance	$N({ m jets})$
$p_T(j_2)$	same flavor $m_{\ell\ell}$
minimum $m(\ell, j)$	$m_T(\ell\ell\ell, E_{ m T}^{ m miss})$
$m(\ell_2,j_1)$	$m(\ell_2,\ell_3)$
$N({ m jets})$	$\Delta\phi(\ell\ell\ell,E_{ m T}^{ m miss})$
$p_{\mathrm{T}} \left(\ell_2 ight)$	minimum $\Delta R(\ell,\ell)$
$m_{\ell\ell}$	$p_{\mathrm{T}}\left(\ell_{3}\right)$
$ \eta(\ell_1) $	$m_T(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$
N(leptons in jets)	$E_{\rm T}^{ m miss}$ significance
$m(\ell_1,j_1)$	

WWW Measurements

Signal Strength

Fit	Observed (expected) significances $[\sigma]$	$\mu(WWW)$
$e^{\pm}e^{\pm}$	2.3 (1.4)	1.69 ± 0.79
$e^{\pm}\mu^{\pm}$	4.6(3.1)	1.57 ± 0.40
$\mu^{\pm}\mu^{\pm}$	5.6(2.8)	2.13 ± 0.47
-2ℓ	6.9(4.1)	1.80 ± 0.33
3ℓ	4.8 (3.7)	1.33 ± 0.39
Combined	8.2(5.4)	1.66 ± 0.28
<u> </u>		·

ATLAS-CONF-2021-039

Uncertainty source	$\Delta \sigma / \sigma \ [\%]$
Data-driven background	5.3
Prompt-lepton-background modeling	3.3
Jets and $E_{\mathrm{T}}^{\mathrm{miss}}$	2.8
MC statistics	2.8
Lepton	2.1
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	0.9
Total systematic uncertainty	9.5
Data statistics	11.2
WZ normalizations	3.3
Total statistical uncertainty	11.6

Measured Cross-Section of WWW production 850 ± 100 (stat.) ± 80 (sys.) fb

- SM expected cross-section from MC samples is used to estimate the μ
 - Cross-section from MC: WWW + WH: 511 ± 42 fb

Summary

- ATLAS Run-II measurements with integrated luminosity 139 fb⁻¹ are presented
 - W⁺W⁻ + ≥ 1 Jets, $Z(\rightarrow \ell\ell)\gamma jj$, $Z(\rightarrow \nu\bar{\nu})\gamma jj$, and WWW production
- Cross-section measurements are studied in detail
- Observation results in stand-alone WWW channel are achieved with 8.2σ

Thank You!!

