Dualities of QCD phase diagram and influence of chiral imbalance on color superconductivity phenomenon

Roman N. Zhokhov IZMIRAN, IHEP 10th ICNFP 2021

Russian Science Foundation

БАЗИС

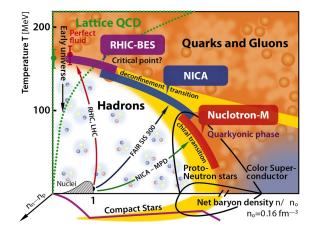
Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

in the broad sense our group stems from Department of Theoretical Physics, Moscow State University Prof. V. Ch. Zhukovsky

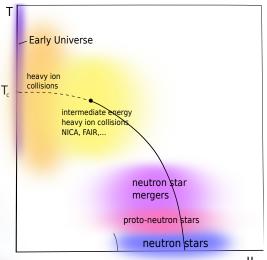
details can be found in

Eur.Phys.J.C 80 (2020) 10, 995 arXiv:2005.05488 [hep-ph] JHEP 06 (2020) 148 arXiv:2003.10562 [hep-ph]
Phys.Rev. D100 (2019) no.3, 034009 arXiv: 1904.07151 [hep-ph] JHEP 1906 (2019) 006 arXiv:1901.02855 [hep-ph]
Eur.Phys.J. C79 (2019) no.2, 151, arXiv:1812.00772 [hep-ph],
Phys.Rev. D98 (2018) no.5, 054030 arXiv:1804.01014 [hep-ph],
Phys.Rev. D97 (2018) no.5, 054036 arXiv:1710.09706 [hep-ph]
Phys.Rev. D95 (2017) no.10, 105010 arXiv:1704.01477 [hep-ph]

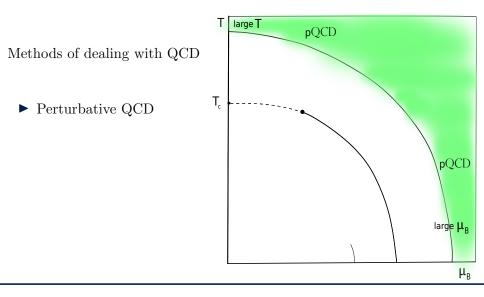

The work is supported by Russian Science Foundation (RSF) under grant number 19-72-00077

 Foundation for the Advancement of Theoretical Physics and Mathematics

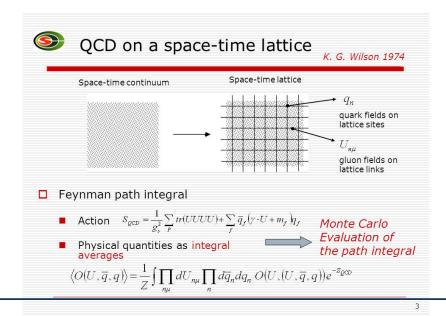
Фонд развития теоретической физики и математики


Two main phase transitions

- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase


QCD Dhase Diagram

QCD at T and μ (QCD at extreme conditions)


- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- neutron star mergers

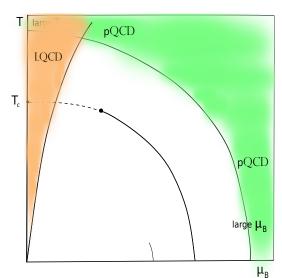
QCD Dhase Diagram and Approaches

lattice QCD at non-zero baryon chemical potential $\mu_B s$

$$Z = \int D[gluons] D[guardes] e^{-N_{acD}^{e}}$$

$$Z = \int D[gluons] Det D(M) e^{-N_{gluons}^{e}}$$

It is well known that at non-zero baryon chemical potential μ_B lattice simulation is quite challenging due to the sign problem complex determinant

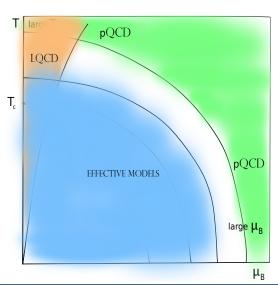

$$(Det(D(\mu)))^{\dagger} = Det(D(-\mu^{\dagger}))$$

QCD Dhase Diagram and Approaches

Methods of dealing with QCD

▶ Perturbative QCD

► First principle calculation - lattice QCD



QCD Dhase Diagram and Methods

Methods of dealing with QCD

▶ Perturbative QCD

- ► First principle calculation - lattice QCD
- ► Effective models
- ► DSE, FRG

NJL model can be considered as **effective model for QCD**.

the model is **nonrenormalizable** Valid up to $E < \Lambda \approx 1$ GeV

 $\mu,T<600\,{\rm MeV}$

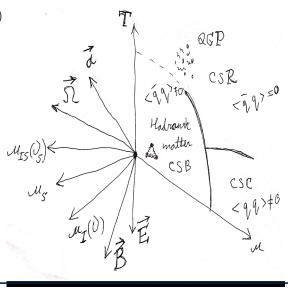
Parameters G, Λ, m_0

chiral limit $m_0 = 0$

in many cases chiral limit is a very good approximation

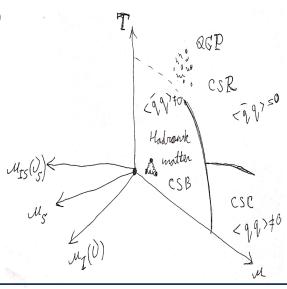
dof- quarks no gluons only four-fermion interaction attractive feature — dynamical CSB the main drawback – lack of confinement (PNJL) Nambu–Jona-Lasinio model

$$\mathcal{L} = \bar{q}\gamma^{\nu}\mathrm{i}\partial_{\nu}q + \frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q}\mathrm{i}\gamma^5 q)^2 \Big]$$
$$q \to e^{i\gamma_5\alpha}q$$


continuous symmetry

$$\begin{split} \widetilde{\mathcal{L}} &= \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \sigma - \mathrm{i} \gamma^5 \pi \Big] q - \frac{N_c}{4G} \Big[\sigma^2 + \pi^2 \Big]. \\ \mathbf{Chiral \ symmetry \ breaking} \\ 1/N_c \ \mathrm{expansion, \ leading \ order} \\ &\quad \langle \bar{q}q \rangle \neq 0 \\ &\quad \langle \sigma \rangle \neq 0 \quad \longrightarrow \quad \widetilde{\mathcal{L}} = \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \langle \sigma \rangle \Big] q \end{split}$$

More external conditions to QCD


More than just QCD at (μ, T)

- more chemical potentials μ_i
- ▶ magnetic fields
- rotation of the system $\vec{\Omega}$
- ▶ acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

More external conditions to QCD

- More than just QCD at (μ, T)
 - more chemical potentials μ_i
 - ▶ magnetic fields
 - ▶ rotation of the system
 - acceleration
 - finite size effects (finite volume and boundary conditions)

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

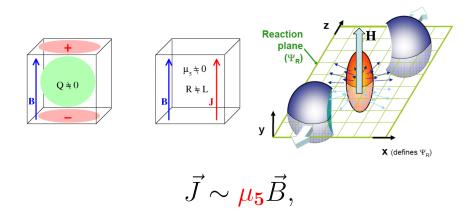
$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

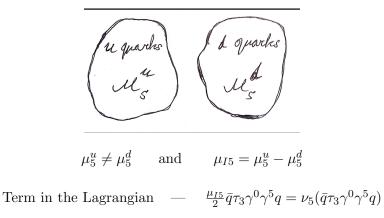
Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3q = \nu\left(\bar{q}\gamma^0\tau_3q\right)$$
$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

chiral (axial) chemical potential


Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$


The corresponding term in the Lagrangian is

 $\mu_5 \bar{q} \gamma^0 \gamma^5 q$

Chiral magnetic effect

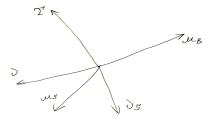
K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033

$$n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$$

► Chiral isospin imbalance and chiral imbalance μ_{I5} and μ_5 can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

- Chiral imbalance could appear in dense matter
 - Chiral separation effect (Thanks for the idea to Igor Shovkovy)
 - ▶ Chiral vortical effect

Different chemical potentials and matter content


$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

QCD phase diagram with different chemical potentials and matter content including chiral imbalance

► QC₂D phase diagram and diquark condensation phenomenon with different chemical potentials, including µ₅

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

Dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

Dualities

Chiral symmetry breaking \iff pion condensation

Isospin imbalance \iff Chiral imbalance

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

 $\Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$
$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

 $\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$

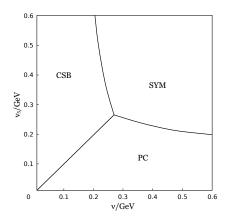


Figure: NJL model results

$$\mathcal{D}: M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

$$\mathcal{L}_{\text{QCD}} = \sum_{f=u,d} \bar{q}_f (i\not\!\!D - m_f) q_f - \frac{1}{4} \mathcal{G}_{\mu\nu,a} \mathcal{G}_a^{\mu\nu}.$$
$$\mathcal{L}_{\text{NJL}} = \sum_{f=u,d} \bar{q}_f \Big[i\gamma^{\nu} \partial_{\nu} - m_f \Big] q_f + \frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 \Big]$$

 m_f is current quark masses

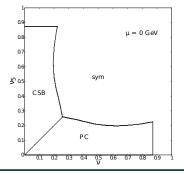
In the chiral limit $m_f = 0$ the Duality \mathcal{D} is exact

 $\begin{array}{ll} m_f: & \frac{m_u+m_d}{2} \approx 3.5 {\rm MeV} \\ {\rm In \ our \ case \ typical \ values \ of \ } \mu,\nu,...,T,.. \sim 10-100s \ {\rm MeV}, \ {\rm for \ example, \ 200-400 \ MeV} \\ {\rm One \ can \ work \ in \ the \ chiral \ limit \ } m_f \rightarrow 0 \\ m_f=0 & \rightarrow m_\pi=0 \\ {\rm physical \ } m_f \ a \ {\rm few \ MeV} \quad \rightarrow \quad {\rm physical \ } m_\pi \sim 140 \ {\rm MeV} \end{array}$

Duality between CSB and PC is approximate in physical point 0.6 0.6 (a) (b) 0.5 0.5 ApprSYM 0.4 CSB ApprSYM 0.4 CSB **CSB**_d v₅/GeV v₅/GeV PC_d 0.2 0.2 PC PC 0.1 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0 v/GeV v/GeV

Figure: (ν, ν_5) phase diagram

 $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$


Duality is shown to take place in particular cases in lattice QCD

• QCD at
$$\mu_5$$
 — (μ_5, T)

V. Braguta, A. Kotov et al, ITEP lattice group

▶ **QCD** at μ_I — (μ_I, T)

G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()

Uses of Dualities

A few rather interesting uses of dualities

discussed in Particles 2020, 3(1), 62-79

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are a lot similarities:

▶ similar phase transitions:

confinement/deconfinement, chiral symmetry breaking/restoration at large T and μ

A lot of physical quantities coincide up to few dozens percent

Critical temperature $T_c/\sqrt{\sigma}$, topological susceptibility $\chi^{\frac{1}{4}}/\sqrt{\sigma}$ shear viscosity η/s

There are no sign problem in SU(2) case

$(Det(D(\mu)))^{\dagger} = Det(D(\mu))$

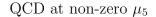
and lattice simulations at non-zero baryon density are possible

It is a great playground for studying dense matter

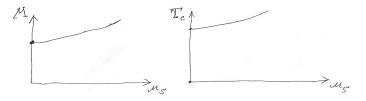
Phase diagram of QC_2D

Possible phases and their Condensates

Condensates and phases

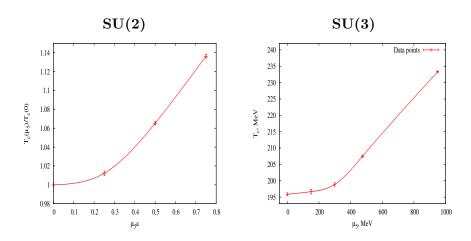

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle, \qquad \text{CSB phase:} \quad M \neq 0,$$

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle, \qquad \text{PC phase:} \quad \pi_1 \neq 0,$$

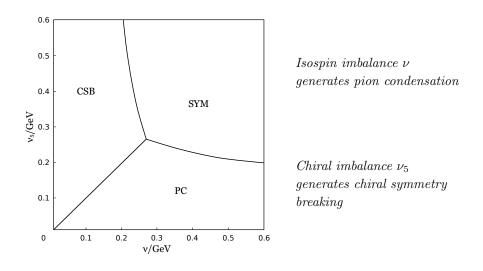

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle, \qquad \text{BSF phase:} \quad \Delta \neq 0.$$

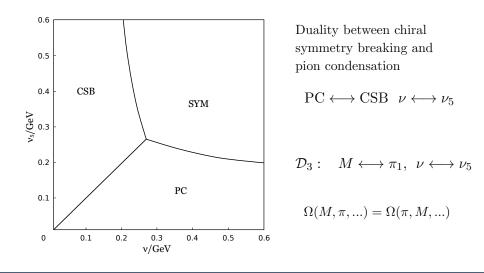
A number of papers predicted **anticatalysis** (T_c decrease with μ_5) of dynamical chiral symmetry breaking

A number of papers predicted **catalysis** (T_c increase with μ_5) of dynamical chiral symmetry breaking

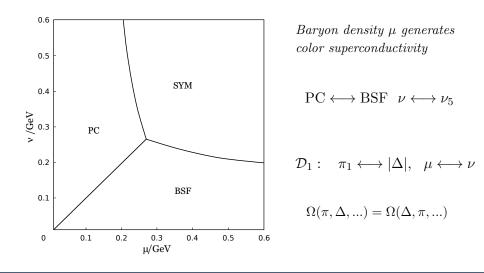

lattice results show the **catalysis** (ITEP lattice group, V. Braguta, A. Kotov, et al) Catalysis of chiral symmetry beaking

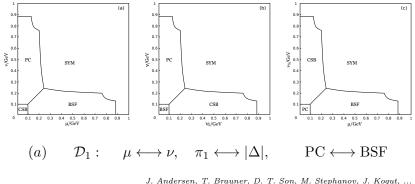
catalysis of CSB by chiral imbalance:


- increase of $\langle \bar{q}q \rangle$ as μ_5 increases
- increase of critical temperature T_c of chiral phase transition (crossover) as μ_5 increases


V. Braguta, A. Kotov et al, JHEP 1506, 094 (2015), PoS LATTICE 2014, 235 (2015)

V. Braguta, A. Kotov et al, Phys. Rev. D 93, 034509 (2016), arXiv:1512.05873 [hep-lat]


Phase structure: (ν, ν_5) -phase diagram

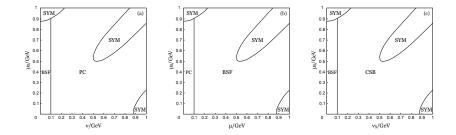

Phase structure: (ν, ν_5) -phase diagram

<u>Phase structure:</u> (μ, ν) -phase diagram

Dualities in QC_2D

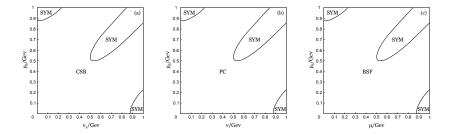
$$(b) \qquad \mathcal{D}_3: \qquad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1, \qquad \mathrm{PC} \longleftrightarrow \mathrm{CSB}$$

 $\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$ (c)


Each chemical potential is connected in one-to-one correspondence with some phenomenon (condensation)

▶ Baryon density $\mu \iff$ diquark condensation

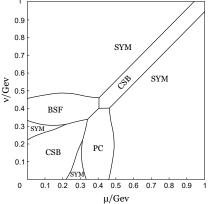
▶ Isospin imbalance $\nu \iff$ pion condensation


• Chiral imbalance $\nu_5 \iff$ chiral symmetry breaking

Universal catalizer effect of chiral imbalance

Chiral imbalance μ_5 catalyzes all the phenomena

Chameleon property of chiral imbalance



Chameleon nature of chiral imbalance μ_5

 μ_5 mimics other chemical potentials μ , ν , ν_5

Diquark condensation at $\mu = 0$

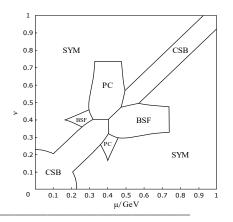
Chiral imbalance μ_5 leads to several rather peculiar phases in the system, e. g. the **diquark condensation** in the region of the phase diagram at $\mu = 0$

(μ, ν, ν_5) phase diagram is highly symmetric due to dualities

and intermingled by dualities at $\mu_5 \neq 0$

 μ_5 deforms the (μ, ν, ν_5) phase diagram

The influence of μ_5 is constrained by dual properties


- Chameleon nature of chiral imbalance μ_5 is also a consequence of dualities
- The feature of μ_5 of being universal catalizer is a consequence of dualities as well

There are a lot of features of QC_2D phase diagram that remains the same in the case of QCD

Including the behaviour of diquark condensation in quark matter with different imbalances

PC_d phase and diquark condensation

- PC_d phase has been predicted without possibility of diquark condensation
- Diquark condensation can take over the PC_d phase
- In two colour case diquark condensation is in a sense even stronger than in three colour case and starts from μ > 0

 PC_d phase is unaffected by BSF phase in two color case. Maybe one can infer that it is the case also for 3 color QCD

- PC_d phase has been predicted without possibility of diquark condensation
- ▶ Diquark condensation can take over the PC_d phase

 PC_d phase is unaffected by CSC phase in three color case.

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality \mathcal{D} is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- In QCD non-pertubartively (at the level of Lagrangian)

▶ $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied in two color color case

- It was shown that there exist dualities in QCD and QC₂D
 Richer structure of Dualities in the two colour case
- There have been shown ideas how dualities can be used
 Duality is not just entertaining mathematical property but an instrument with very high predictivity power
- Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD