High-Resolution Microcalorimeter Measurement of X-Ray Transitions in He-like Uranium at CRYRING@ESR

Philip Pfäfflein

Helmholtz Institute Jena

ICNFP, 27.08.2021
He-Like Atomic/Ionic Systems

\[\begin{align*}
[1s_{1/2}, 2s_{1/2}] & \quad ^3S_0 \\
[1s_{1/2}, 2s_{1/2}] & \quad ^3S_1 \\
[1s_{1/2}, 1s_{1/2}] & \quad ^1S_0 \\
\end{align*}\]

E1 (Kα₁)
M2 (Kα₂)
M1 (Kα₁)
E1 (Kα₂)

\[\begin{align*}
[1s_{1/2}, 2p_{3/2}] & \quad ^3P_1 \\
[1s_{1/2}, 2p_{3/2}] & \quad ^3P_2 \\
[1s_{1/2}, 2p_{1/2}] & \quad ^3P_0 \\
[1s_{1/2}, 2p_{1/2}] & \quad ^3P_1 \\
\end{align*}\]

\(E = 1.8 \times 10^{16} \text{ V/cm}\)
\(E_b = -132 \text{ keV}\)

\(E = 1 \times 10^{10} \text{ V/cm}\)
\(E_b = -13.6 \text{ eV}\)
Evidence for a Z-dependent Divergence Between Experiment and Calculation
(C. T. Chantler et al., PRL 109, 153001 (2012))
GSI / FAIR: Acceleration & Deceleration of Ions

Ion source U⁷⁺
- **U²⁸⁺ 1.4 MeV/u**
- **UNILAC - Accel**
- **U⁷³⁺ 11.4 MeV/u**
- **SIS 18 - Accel**
- **U⁹¹⁺ 400 MeV/u**
- **ESR - Decel**
- **U⁹¹⁺ 10 MeV/u**
- **CRYRING@ESR**
 - **U⁹¹⁺ 10 MeV/u**
Spectroscopy of U\(^{90+}\) at CRYRING@ESR Electron Cooler

- Adapting the well-proven, successful concept from the ESR cooler to CRYRING@ESR, applying novel high resolution calorimeter detectors.

- CRYRING@ESR: Factor 4 enhanced luminosity compared to ESR

Metallic magnetic microcalorimeter

Working principle

- $\varepsilon = 10^{-7}$

- Microcalorimeter arrays for high-resolution X-ray spectroscopy (maXs)

Philip Pfäfflein – ICNFP 2021

27.08.2021
The New Experimental Setup at CRYRING@ESR

Key features:

0° and 180° observation angles
⇒ Insensitivity to geometrical misalignment

Beryllium windows ①
⇒ High transmission also in the low photon-energy range

Energy calibration ②
⇒ Control of detector response function

High-resolution microcalorimeter detectors ③
⇒ Improved line centroid determination
Advantages of the Measurement Positions at CRYRING Electron Cooler

Uncertainties due to relativistic Doppler shift are greatly reduced at a low beam energy and with two detectors at 0° and 180°.

\[E_{\text{lab}}(0°) + E_{\text{lab}}(180°) = \frac{2 \cdot E_{\text{proj}}}{\gamma} \]

- \(E_{\text{lab}} \): Photon energy in the laboratory system
- \(E_{\text{proj}} \): Photon energy in the emitter system

Example:
- 358 MeV/u (\(\beta = 0.69 \))
- 220 MeV/u (\(\beta = 0.59 \))
- 68 MeV/u (\(\beta = 0.36 \))
- 5 MeV/u (\(\beta = 0.10 \))
What are Microcalorimeters?

»Very small thermometer for measuring single particle energies«

Particle with energy ΔE

Change in temperature ΔT

Signal ΔU

Absorber → Sensor → Thermal link

Thermal bath @ 10 mK

maXs-30
Detector parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active area:</td>
<td>1 cm^2 (64 pixels, with $1.25 \times 1.25 \text{ mm}^2$ each)</td>
</tr>
<tr>
<td>FWHM at 60 keV:</td>
<td>60 eV</td>
</tr>
<tr>
<td>Efficiency (QE) at 100 keV:</td>
<td>$> 50%$</td>
</tr>
</tbody>
</table>

The microcalorimeter arrays developed within the maXs project are designed for high-resolution X-ray spectroscopy, featuring a compact and highly efficient detector configuration.

![Image of maXs-100 detector](image-url)
Microcalorimeter Arrays for High-resolution X-ray Spectroscopy - maXs

Detector parameters:

Active area: 1 cm² (64 pixels, with 1.25 x 1.25 mm² each)

FWHM at 60 keV: 60 eV

Efficiency (QE) at 100 keV: > 50%

A. Gumberidze et al., PRL 032712 (2004)
maXs-100 Detector - Optimized for 100 keV

Bluefors-cryostat & maXs-detector for 180°

New detector arm and chip developed at Heidelberg University.
Calibration Source Holder/Manipulator

- **Purpose:**
 - mounting and movement of calibration sources
 - shielding the detector from their radiation when parked

- **Features:**
 - controlled motion synchronised with machine status
 - readout of position → source fed into DAQ
 - lead and copper shielding
Beryllium Window Chambers

- **Purpose:** window exchange without breaking CRYRING@ESR vacuum.
- **Features:** self-contained with own vacuum pumps, vacuum sensor and heating jackets.

Were mounted in January/February 2020 as part of the E138 experiment.

⇒ Will stay available for future spectroscopy experiments at the CRYRING@ESR electron cooler.
Setup at CRYRING@ESR: Cleaner Spectra + Low Energy Lines

Commissioning CRYRING@ESR (2020)

\[\text{Pb}^{82+} + e^{-} \rightarrow \text{Pb}^{81+} + \hbar \omega \]

X-rays recorded in coincidence with \(\text{Pb}^{81+} \)

ESR (2005)

\[\text{U}^{92+} + e^{-} \rightarrow \text{U}^{91+} + \hbar \omega \]

X-rays recorded in coincidence with \(\text{U}^{91+} \)

Low energy transitions, that are virtually unaffected by Lamb shift corrections, will be used for a spectroscopic determination of the Doppler shift.
Experimental Run April 2021

What has been achieved?

✓ Uninterrupted operation over several weeks of the novel maXs detectors

✓ No effect of the EM enviroment of CRYRING@ESR on the detector performance

✓ Positioning of calibration sources in synchronization with the measurement cycle (quasi-continuous calibration)

✓ First demonstration and utilization of the time resolution of the maXs detectors

Thank you to the team
Background Suppression via Coincidences with U^{90+} Ions

We utilized for the first time the time resolution of the maXs detector to suppress the radiation background via a coincidence condition on the detection of down-charged ions.

Coincidence Peak

\[\Delta t \approx 1 \mu s \text{ FWHM} \]
Coincidence Conditions Yield Clear U$^{90+}$ Spectra

Radiative Recombination (RR) into U$^{91+}$

Balmer transitions in U$^{90+}$

Kα in U$^{90+}$

K-RR

Balmer transitions in U$^{90+}$
A Shoutout to the E138 Collaboration

The Ground-State Lamb Shift in the Heaviest Hydrogen-like Ion (U^{23+}): High Resolution X-ray Spectroscopy at the CRYRING Electron Cooler

1 Helmholtz Institute Jena, Jena, Germany
2 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität, Heidelberg, Germany
3 Centro de Física Atómica, Departamento de Física, Facultad de Ciencias e Tecnología, Universidad de La Laguna, Cádiz, Spain
4 Instituto de Física, Jan Kochanowski University, Kielce, Poland
5 Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Germany
6 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
7 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL, Research University, Collège de France, Paris, France
8 Institut für Kernphysik, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
9 Technische Hochschule Mittelhessen, Gießen, Germany
10 I. Physikalisches Institut, Justus Liebig University, Giessen, Germany
11 St. Petersburg State University, St. Petersburg, Russia
12 Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France
13 Institute of Physics, Jagiellonian University, Krakow, Poland

27.08.2021

Philip Pfafflein – ICNFP 2021

42 shifts (=14 days) of beam time at CRYRING@ESR granted.

SPONSORED BY THE
Thank you for your attention

Time for questions