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INTRODUCTION:

Create energetic ion beams under specific physical

conditions, for basic nuclear science and applications.
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Measuring S-factors in hot and dense plasma
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3.0 Experimental Objectives and Concept

We propose to conduct experiments that follow on from the successful deuterium
cluster fusion experiments in early 2011 on the TPW. Specifically we propose a
detailed investigation of ion temperature in hot exploding cluster plasmas. To do this
we will simultaneously measure the experimental yield from two different nuclear
reactions. While our first experiments utilized pure deuterium to drive the d(d,p)T
and d(d,n)He’ reactions we now propose to mix He’ into the gas jet target to allow us
to measure simultaneously yields from the He’(d,p)He* and the d-d reactions.
Because these two reactions have different cross sections, measuring the ratio of the
yields between these two reactions will allow a precise determination of the plasma
temperature at the time when the reaction occurred (assuming thermalization). The
measure of the experimental yield from sequential reactions will also make possible a
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High power laser can be used to generate neutrons
from the fusion reaction

Nuclear fusion from laser-cluster interaction

D, gas tank
Supersonic NHQZZE (high backing pressure)
H
fll %m
i

-

e '

4 . ® 5 .

. High power

/ laser pulse in
9 ® ®

* Most of the laser pulse energy is
absorbed by the atomic clusters.
 Clusters experience Coulomb
explosion after electrons escape.
DD fusion occurs, and 2.45MeV
fusion neutrons are produced.




Expected fusion reactions:

D+D ->T(1.01 MeV) + p (3.02 MeV)
(50%)

D+ D ->3He (0.82 MeV) + n (2.45 MeV)
(50%)

D + 3He-> “He (3.6 MeV) + p (14.69 MeV)
(100%)

D+ T-> *“He (3.5 MeV) + n (14.1 MeV)
(100%)
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Measured observables

Measure N. of ions

Temperature and the
number of the energetic
ions

{—

Yield of 2.45 MeV neutrons —

Yield of 3.02 MeV protons

Yield of 14.7 MeV protons

Measure N.of fusions
for each channel
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Gamow peak approximation near strong resonances
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We discuss the most effective energy range for charged-particle-induced reactions in a plasma environment
at a given plasma temperature. The correspondence between the plasma temperature and the most effective
energy should be modified from the one given by the Gamow peak energy, in the presence of a significant
incident-energy dependence in the astrophysical S factor as in the case of resonant reactions. The suggested
modification of the effective energy range is important not only in thermonuclear reactions at high temperature in
the stellar environment, e.g., in advanced burning stages of massive stars and in explosive stellar environments,
as has been already claimed, but also in the application of nuclear reactions driven by ultra-intense laser-pulse
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Temperature Measurements of Fusion Plasmas Produced by Petawatt-Laser-Irradiated
D, — 3He or CD, — *He Clustering Gases

W. Bang.,"* M. Barbui,” A. Bonasera,™ G. Dyer,' H.J. Quevedo,' K. Hagel,> K. Schmidt,” F. Consoli.,”
R. De Angelis,* P. Andreoli,* E. Gaul,' A.C. Bernstein,' M. Donovan,' M. Barbarino,” S. Kimura,”
M. Mazzocco,” J. Sura,” J. B. Natowitz,” and T. Ditmire'
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(Received 25 February 2013: published 30 July 2013)

Two different methods have been employed to determine the plasma temperature in a laser-cluster
fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight
data of deuterium ions ejected from exploding D, or CD; clusters. In the second, the temperature was
measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the
same time: D(d, *He)n and *He(d, p)*He. The temperatures determined by these two methods agree well,
which indicates that (i) the ion energy distribution is not significantly distorted when ions travel in the
disassembling plasma; (i1) the Kinetic energy of deuterium ions, especially the “hottest part™ responsible
for nuclear fusion, is well described by a near-Maxwellian distribution.

DOI: 10.1103/PhysRevLett.111.055002 PACS numbers: 52.50.Jm, 25.45.~z, 36.40.Wa

Nuclear fusion from explosions of laser-heated clusters  deuterated methane cluster plasmas produced by the irra-
has been an active research topic for over adecade [1-11].  diation of a clustering gas jet by 150 fs petawatt peak
Researchers have used explosions of cryogenically cooled  power laser pulses. We find that the effective ion tempera-
deuterium (D,) cluster targets or near-room-temperature  ture produced can be in excess of 25 keV.
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Measurement of the Plasma Astrophysical S Factor for the *He(*H, p)*He Reaction
in Exploding Molecular Clusters
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Synopsis: Nuclear Reactions in Lab Plasma

® -9 ° ..(" Measurement of the Plasma Astrophysical S Factor for the 3He[u‘.,c‘.]‘:lHe Reaction in Exploding Molecular Clusters
-] o ° . Barbui, V. Bang, A Bonasera, K. Hagel, K. Schmidt, J. B. Matowitz, R Burch, G. Giuliani, M. Barbarino, H. Zheng, G. Dyer. H. J. Queveda.
.’/ *lm / E. Gaul, A C. Bernstein, [u’l. [?nnovan. S. Kimura, M. Mazzocco, F. Consoli, R. De Angelis, P. Andrecli, and T. Ditmire
Phys. Rev. Lett. 111, 082502 (2013)
/ % ® Published August 22, 2013
Courtesy B Texas AEM U by

Many low-energy nuclear reactions in astrophysics occur in plasmas, in which the nuclei are free of electrons. By contrast, most nuclear experiments involve neutral targets, whose bound electrons produce a “screening effect.” A new
technigue uses lasers to remave these unwanted electrons so that low-energy nuclear reactions can be studied directly in laboratory plasma. The authors demaonstrate their approach in Physical Review Letters on the deuterium/helium-
3 interaction that helped synthesize elements in the early Universe and could potentially be used to power a future nuclear fusion reactor

In a typical nuclear reaction experiment, an ion beam is directed at a target containing neutral atoms. The bound electrons provide a screen that reduces the Coulomb repulsion between the positive nuclei. Therefore. laboratory
measurements tend to predict higher reaction rates than would be expected between ionized nuclei. To obtain astrophysically relevant parameters, researchers try to correct their data by estimating the screening effect of the bound
electrons



PHYSICAL REVIEW C 93, 045808 (2016)

Model-independent determination of the astrophysical § factor in laser-induced fusion plasmas
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In this work, we present a new and general method for measuring the astrophysical § factor of noclear
reactions in laser-induced plasmas and we apply it to *H{d_n)’ He. The experiment was performed with the Texas
Petawatt Laser, which delivered 150270 f= pulses of energy ranging from 90 to 180 1 to Ty or CTy molecular
clusters (where D) denotes *H). Afier removing the background noise, we used the measured time-of-Aight data
of energetic deuterium ions to obtain their energy distribotion. We derive the § factor using the measored energy
distribation of the ions, the measured volume of the fusion plasma, and the mezsured fusion yields. This methodd
iz model independent in the sense that no assumpiion on the state of the system is required. but it requires
an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion
vields. In the *Hid ,n)*He and *He(d. pi*He cases discussed here, it is very important to apply the background
subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data
on both ion distribution and fusion vields allow us to determine with good precision the § factor in the d + d case
{lower Gamow energies), for the d + *He case the data are not precise enough to obtain the 5 factor using this
method. Our resulis agree with other experiments within the experimental ermor, even though smaller values of the
& factor were obtained. This might be due to the plasma environment differing from the beam tarpet conditions

in & conventional accelerator experimant.

DO 1001 103/ PhysRevC.953 04 5808

L INTRODUCTION

The nuclear reactions between light nuclel in the low encrgy
region (~ ke¥V),

d+d — Hel0.82 MeV) + (245 MeV), (1)

d+d — p(3.02 McV) + #(1.01 MeV). (2)
d + “He — p(14.7 MeV) + *He(3.6 MeV). (3)

have been studied for many decades [1-10]. The role of low-
energy nuclear physics 1s crucial in both astrophysics, plaving a
key role in the determination of pnmordial abundances in Big
Bang nuclcosynthesis (BBN) models, and applicd (plasma)
physics, as it lies in the energy region of interest for the
oneration and desion of foture fuston power olamts. Thresct and

with bare nuclel and with the ones occumng in astrophysical
plasmas [1.,6,13,14].

(ther physical conditions are possible which might de-
crease the astrophysical factor, dubbed the dissipative limat
(DL) in [11,12]. In a hot plasma, due to the large number
of posiive and negative charges, fusions occumng in an
“electron” cloud mught be enhanced. If. however, a large
number of positive charges 15 present in the remon where fusion
occurs, then the cross section might decrease. In laser-cluster
interactions we might be able to create such condiions, thus
it would represent a good chance to study the fusion cross
sections within stellar plasmas in a laboratory. In particolar,
we can explore temperatures ranging from few keV l]|:l to few
tens of keV and a density just above 100 atoms/cm?. These
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Eange of plasma ions in cold duster gases
Petawatt Lazer interaction with cluster gazes
Ioni range in sysiems prepared near a
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We measure the range of plasma ions in cold duster gases by using the Perawar Laser ar the University
of Texas-Ausin. The produced plasma propagared in all directsons some himing the cold duswer gas not
illuminared by the laser. From the ratic of the measared ion distribumons ar different angies we Can
estimare the range o the wons in the cold cluster gas. It is much smaller than estimared using popular
models, which take only imo account the slowing down of charged parickss in uniform marer. We
disCuss the i0n range in systems prepared near 3 liquid-gas phase ransision.
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Muoclear fusion from explosions of laserheated clusters has
been an active research topic for over a decade |1-14]. The ex-
plosions of cryogenically cooled deuterium (D4 ) cluster targets or
near-room-temperature deuterium-methane (COg) cluster targets
drive fusion reactions. A high intensity femtosecond laser pulse
irradiated the closter gas. This produces energetic explosions of
the clusters and tens of keV ion plasma temperature results. DD
fusion occurring within this high temperature plasma combined
with beam-target fusion, bebween the ejected ions of the cluster
and surrounding cold cluster gas, leads to a burst of fusion neuw-
trons and protons. Following these experiments, we have modified
some aspects in order to be able to measure the range of ener
getic ions in the cold cluster gases. Recall that the range of ions is
crucial to estimate the fusion rates in the plasma. We have oppor-
tunely focused the laser in such a way that the high-energy pulse
drills a “hole® in the target. We found that less than 10% of the
lazer energy went through the cluster gas for each shot.

A schematic view of this scenario is plotted in Fig. 1a, while an
actual experimental result is given in Fig. 1b Two Faraday cups
[FC) were opportunely located: the first one [UTFC) as close as

* Corresponding author
E-moil pddrees: aborassra@oomp tamuedu (A Bonasera)
1 Om beawe from SINAF, Shanghai, China.

Ertttpe [Tebv doi orgf 1010 F jphysleta 207 00006
097 595018 2017 Elssvier BY. All rights resereed.

possible to the incoming laser direction [—67.5% minimum) thus
measuring essentially the hot plasma only; the second one [CTFC)
was located at an angle around 45=, see Fig. |, and compatible to
the physical constraints of the labomatory [walls). The ratio of the
FC signals gives an indication of the range of the ions in the sur-
rounding cold cluster gas. Our experimental results show that the
renge of the ions in the duster gas is almost independent of their energies
and it is much shorter thon the renge colowloted wsing the popwlor SEM
code for instonce [15]. The physics included in SRIM or similar mod-
els, is the skowing down of kel ions due o the interaction with
electrons in the uniform gas. In our case, the gas has not an uni-
form density distribotion baut it is made of drops of different sizes,
well explained by a log-normal distribution 16,17, formed during
the free expansion into vacuum after the opening of the pulsed
valve., Drops can present already inside the valve before the ex-
pansion, if the gas is prepared for instance near the critical point of
the liquid-gas (LG) phase transition. It is of great interest to study
what happens in those cases after the gas expands. Mear the sec-
ond order LG phase transition, the mass distribution of the clusters
follows the Fisher's law and in particular it is a power law at the
critical point [18]. The free expansion might change such distribu-
tion. Theoretical calculations of a classical interacting gas, which
freely expands after has been prepared near the critical point [ 19],
do not display much variation from the predicted Fisher's cluster
distribution. Thus, the cluster size distribution obtained from the
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Ni R Cryogenic Measure plasma ions kinetic energy
Il d+t Target distribution: determine non-equilibrium and
, or solid thermal components
sLid(t) d+t—>a+n  “Hetd>atp.
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usions in t+t—>a+2n
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..3rd.4th ...order nuclear reactions.Some reaction can be measured, some NOT.
I

| From these informations we can derive the astrophysical
|| S-factor for the main channels and some of the higher
order reactions as function of temperature, density and

| collective energy of the plasma.
il In the 18 months we plan to perform 8 shots @ NIF with

ll various targets-laser beams combinations and
preliminary data analysis completed.




operating since 2011
8 beams output 40 kJ/3 ns/1 w, 24 kJ/3 ns/3 w

PW laser (1.5kJ, 2ps, 2011)
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Collaboration



TABLE I. Laser parameters

shot 18

laser energy(J) shot 1 shot 2 shot 3 shot 4 shot 5
up 4977.89 5144.29 5026.44 S017.57 6621.55
down 6912.87 T069.24 5525.58 7247.5 7233.71
duration(ns) 2 2 2 2 2
focalization(pm) 200 200 200 150 400
target thickness(pm) 400 905 1095 850 210
target width(um) 1000 800 1000 1000 1000
laser stucture center center center center center
laser energy(J) shot6  shot 7("*C) shot 8(LiD) shot 9 shot 10
up 6821.62 6435.02 6597.74 6681.29 3554.82
down T660.26 T7495.56 7H23.18 T287.12 3883.27
duration(ns) 2 2 2 2 1
focalization(pm) 150 150 150 150 150
target thickneas(pm) 2444 300 300 69.56 69.56
target width(um) 2000 500(hole)  500{hole) 600 600
laser stucture center center center center center
laser energy(J) shot 11 shot 12 shot 13 shot 14 shot 15
up 1672.83 T421.34 9179.14 9569.93 9419.71
down 1729.44 T635.61 9532.21 O775.48 09633.67
duration(ns) 0.5 3 3 3 3
focalization(gam) 150 150 150 150 150
target thickness(pum)  69.56 69.56 9 32 40
target width(um) 600 600 600 600 4000
laser stucture center center Audi rings  center  borromean

laser energy(J) shot 16 shot 17 shot 19 shot 20
up 9125.03 1805.98 3290.49 3808.78 1441.04
down 9313.11 1916.51 3355.43 4238.80 1638.25
duration(ns) 3 0.5 3 1 0.5
focalization(gm) 150 150 150 150 150
target thickness(pm) 3.6 3.6 10 10 10
target width(um) 3500 3500 1000 1000 1000
laser stucture borromean  center borromean borromean borromean
laser energy(.J) shot 21 shot 22 shot 23
up 6582.84 1487.00 553.29
down 7T042.43 1608.13 733.32
duration(ns) 2 0.5 0.25
focalization(um) 150 150 150
target thickness(pm) 20 20 20
target width(um) 1000 1000 1000
laser stucture borromean borromean borromean

zhangguoqiang2017-04-13 @SINAP
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Cross sections\S-factor\reaction rate in plasmas

The effect of ternary fusion reactions Highly compressed and not so hot plasma

Nf1=Ni*p<ovt>/2= Ni*p<c1>r1/2

Nf2=Nf1*p<c2>r2

d + d = 3He (0.82 MeV) + n (2.45 MeV)
d+d— t(1.01MeV) + p (3.02 MeV)

d+t— “He (3.5MeV ) + n (14.1 MeV)
d + SHe — “He ( 3.6MeV ) + p (14.7 MeV)

IFIEEE- T

1 | Wil | 3He (0.82 MeV) n (2.45 MeV) t (1.01MeV) p (3.02 MeV)

2 V74 | [“He ( 3.5MeV ) n (14.1 MeV) “He ( 3.6MeV ) p (14.7 MeV)
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Figure 2: (color online) a) Deutennum energy distribution from the top (full circles) and bottom (open circkes) FC,
and TP (full tnangles). b) TP spectra relative to the laser iradiation of CD;, target ¢) TOF results for 14.1 MeV and
2.45 MeV ncutrons from plastic scintillator detector. The two arrows indicate the 14.1 MeV and 2.45 MeV neutron
ENCTRICS.
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Figure 3: (color online) Fusion yield as function of laser energy. Different experimental results Ditmine- 200477,
UT-2011°°, UT-20167, Fu-2015 SGII*°, Dittrich-1994%  NIF-2014%% | Osaka -2001*! | Osaka-2004**, OMEGA-
shot3241*and SGIllpro2017*7 are indicated in the inset.
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Figure 5: (color online) The average cross section as function of temperature with Maxwell-Boltzmann distribution,
expressed by eq. (6) . The red points are the experimental cross section data from eq.(5).
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Figure 4: (color online) Apo/in2 obtained from eq.(4) vs T from eq.(1). Omega and NIF data ar derived from the
experiments™, using the Down Scatter Ratio®!- 2, l:.'ll.n' results using the DSR method (N4/N3) are given by the open
tnanglk symbols in good agreement with the N3/N2 ratios..
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ARTICLE I NF O ABSTRACT
Amicle history: We report the highest compression reached in laboratory plasmas using eight laser beams, B = 12
Received 16 January 2019 kl, 5igzer = 2 ns in third harmonic on a CDs target at the ShenGuang-Il Upgrade (SGI-Up) facility in

Received in revised form 19 April 2019
Accepred 23 April 2019
Available onlime 30 April 2019

Shanghai, China. We estimate the deuterium density pp = 2.0 £ 0.9 kgfcm®, and the average kinetic
energy of the plasma ions less than 1 keV. The highest reached areal density App =4.8+ 1.5 g/cm? was

Communicared by E Porcelli obtained from the measured ratio of the sgquenrja] ternary fusion reactions (dd—t+p and t+d—o+n)
and the two body reaction fusions (dd — “He + n). At such high densities, sequential ternary and also
Keywords: guaternary nuclear reactions become important as well (i.e. n{141 MeV+!2C — o'+ etc.) resulting
Laser plasma in a shift of the neutron (and proton) kinetic energies from their birth values. The Down Scarter Ratio
Nuclear astrophysics (DSR-guaternary nuclear reactions) method, i.e. the ratio of the 10-12 MeV neutrons divided by the
[n_erria Eﬂ“ﬁ"E“'EI_'IE fusion total number of 14.1 MeV neutrons produced, confirms the high densities reported above. The estimated
High-energy-density plasma lifetime of the highly compressed plasma is 52 + 9 ps, much smaller than the lasers pulse duration.

iy 2019 Elsevier BV. All rights reserved.
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Nuclear Astrophysics with Lasers
Meirong Huang, Hernan J. Quevedo, Guoqiang Zhang & Aldo Bonasera

A systematic program of mvestigations of nuclear reactions in laser-produced plasmas 1s addressed. Such reactions
provide an important diagnostic tool for probing the dynamics and thermodynamics 1n the plasma and understanding laser
1on acceleration and neutron production mechanisms. The goal will be to reach the level of knowledge that allows the
measurement of fundamental nuclear cross sections at low and high particle densities. The quantitative measurement of
fusion probabilities in hot and dense plasmas will contribute significantly to our comprehension of stellar composition
and evolution and will provide important information for development of fusion energy production and applications such
as medical 1sotope production and compact neutron source development. All of these are some of the main goals of the
European Extreme Light Infrastructure (ELI), the Shanghai Superintense Ultrafast Laser Facility (SULF), the Station of
Extreme Light (SEL) in China and similar projects in other countries.
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