Missing values treatment in event classification

<u>Aleksandr Petukhov</u>, Evgeny Soldatov, Konstantin Savelev National Research Nuclear University MEPhl

ICNFP-2021, Crete 27.08.2021

What are the missing values?

In machine learning:

- data corruption
- failure to record data

Such data are usually **not considered** in a high energy physics analysis.

However, machine learning algorithms are coming up with ways to treat these values **without assigning** them anything.

Is there an application in high energy physics?

What are the missing values?

final state

In high energy physics:

 parameters of particles not present in all of the considered events

Example: vector boson scattering (VBS) processes with VVjj final states in proton collisions.

- ≥ 2 hadron jet final state
- additional hadron jet variables could be used for discrimination

Can we use machine learning approaches to the missing values for this case?

Benchmark processes

Signal: electroweak (EWK) associated Z(vv)yjj production in pp-collisions

Background: QCD associated Z(vv)yjj production

- defined by 2 jets in the final state
- 3 jet variables could be used for disctimination

Machine learning algorithms

Two main Boosted Decision Tree algorithms have an automated way to treat missing variables

- XGBoost
- LightGBM

Preliminary test show no difference in the results, so the **LightGBM** was adopted as a faster one

Performance metric: statistical significance

$$\frac{S}{\sqrt{S+B}}$$

- S number of signal events
- B number of background events

Studied approaches

Base. ≥2 jets. No 3rd jet variable used. Reference.

Clustering. Split the samples into two categories, with two classifiers:

- 1) =2 jets using no 3rd jet variables
- 2) ≥3 jets using 3 jet variables

Combine the result.

Imputation. ≥2 jets. Use 3rd jet variables but set the distinct values for events with 2 jets.

Automated (from LightGBM). ≥2 jets. No special treatment for 3rd jet variables in events with 2 jets

Dataset used for the study

Process: pp \rightarrow Zyjj, Z $\rightarrow vv$ Z-boson is observed with missing transverse energy (E_T^{miss})

Data:

- MadGraph + Pythia8 + Delphes (with ATLAS card)

• $\sqrt{S} = 13 \text{ TeV}$ • Normalized for L = 139 fb⁻¹ 2015-2018 ATLAS datataking

Final state objects:

- ≥ 2 hadron jets
- high energy photon
- E_T^{miss} with large magnitude

See backup for details on the selection

Studied variables

34 variables with photon, E_T^{miss} and 2 leading jet parameters

- each object parameters
- m[jj], jet pair invariant mass
- photon centrality
- ∆Y[jj]

11 variables with 3rd jet parameters

- m[jjj], invariant mass of 3 jets
- 3rd jet centrality

X-centrality=
$$\left| \frac{y(X) - \frac{y(j_1) + y(j_2)}{2}}{y(j_1) - y(j_2)} \right|$$

Classifier optimization

Default hyperparameters of the **Base** approach used to select the nominal variable set.

Default hyperparameters the **Automated** approach used to further select the additional set of 3rd jet variables.

Selected variable sets are used to optimize the hyperparameters of all of the approaches.

Problem with clusterization

=2 jets, **Base** hyperparameters

≥3 jets, **Base** hyperparameters

≥3 jets, tuned hyperparameters

The model for the \geq 3 jets region is prone to overtraining \rightarrow requires additional optimization \rightarrow more time and computer resources required

Imputation

Used only variables with positive values.

For events with 2 jets the values of the variables were set to -1.

Results

sing 3rd jet	formation
Usi	info

Algorithm	Signal events	Background events	Significance, σ
Base	81.5 ± 0.5	53.0 ± 1.0	7.03 ± 0.04
Clustering	97.8 ± 0.6	76.8 ± 1.3	7.40 ± 0.05
Imputation	92.4 ± 0.5	64.7 ± 1.2	7.37 ± 0.04
Automated	99.2 ± 0.6	84.6 ± 1.3	7.31 ± 0.04

Use of 3rd jet information allows for a better statistical significance.

Clustering and **imputation** approaches provide the largest increase, but **automated** algorithm together with not very significant loss in performance requires the least computation time or manual variable modification

Conclusion

- Algorithms that use 3rd jet information were used to discriminate VBS signal from it's main background.
- Use of 3rd jet information allowed for a higher statistical significance
- The best performing 3rd jet variables: $\Delta R(j_1, j_2)$, j_3 -cent., $\Delta R(j_2, j_3)$, $m(E_T^{miss}, j_3)$, $m(\gamma, j_3)$
- **Clustering** and **imputation** provide the largest increase in significance, however they have some limitations
- Automated algorithm from LightGBM together with not very significant loss in performance requires the least time and manual modification
- All of the described approaches may be used in further VBS searches in proton collisions. However, automated algorithm shows more universality

Backup slides

Preselection

- $ho_T^{
 m jet} > 20 \; {
 m GeV}$
- ► ≥ 2 hadron jets
- no leptons
- $ightharpoonup E_T^{
 m miss} > 120 \; {
 m GeV}$
- $p_T^{\gamma} > 150 \text{ GeV}$
- $\sum_{\substack{\Delta R < \mathbf{0.4} \ p_T^{\gamma}}} \sum_{\substack{P \in \mathcal{P}_T}} < 0.05$ photon isolation

Nominal variable set. 1/2

- 1. $p_T(j_1)$; 2. $\varphi(j_1)$; 3. $\eta(j_1)$; 4. $p_T(j_2)$; 5. $\varphi(j_2)$; 6. $\eta(j_2)$; 7. p_T^{γ} ; 8. $\varphi(\gamma)$; 9. $\eta(\gamma)$; 10. E_T^{miss} ; 11. $\varphi(\vec{p}_T^{\text{miss}});$
- 12. m_{jj} , jet pair invariant mass;

13.
$$\gamma$$
-centrality= $\left|\frac{y(\gamma) - \frac{y(j_1) + y(j_2)}{2}}{y(j_1) - y(j_2)}\right|$;

14.
$$p_T$$
-balance= $\frac{|\vec{p}_T^{\text{miss}} + \vec{p}_T^{\gamma} + \vec{p}_T^{j_1} + \vec{p}_T^{j_2}|}{E_T^{\text{miss}} + E_T^{\gamma} + p_T^{j_1} + p_T^{j_2}};$

```
15. p_T-balance(reduced) = \frac{|\vec{p}_T^{\gamma} + \vec{p}_T^{j_1} + \vec{p}_T^{j_2}|}{E_T^{\gamma} + p_T^{j_1} + p_T^{j_2}};
```

16. N_{jets}, number of hadron jets;

17.
$$\Delta Y(j_1, j_2)$$
;

18.
$$\Delta Y(j_1, \gamma)$$
;

19.
$$\Delta Y(j_2, \gamma)$$
;

20.
$$\Delta R(j_1, j_2)$$
, where $\Delta R = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2}$;

21.
$$\Delta R(j_1, \gamma)$$
;

22.
$$\Delta R(j_2, \gamma)$$
;

23.
$$\Delta R(j_1, \vec{p}_T^{\text{miss}});$$

24.
$$\Delta R(j_2, \vec{p}_T^{\text{miss}});$$

Highlighted variables were used to create the classifiers

Nominal variable set. 2/2

```
25. m(\vec{p}_T^{\text{miss}}, \gamma);
```

26.
$$m(\vec{p}_T^{\text{miss}}, j_1)$$
;

27.
$$m(\vec{p}_T^{\text{miss}}, j_2)$$
;

28.
$$m(\gamma, j_1)$$
;

29.
$$m(\gamma, j_2)$$
;

30.
$$\Delta \varphi(j_1, j_2)$$
;

31.
$$\sin\left(\left|\frac{\Delta\varphi(j_1,j_2)}{2}\right|\right)$$
;

32.
$$|p_T(j_1) - p_T(j_2)|$$
;

33. jet-centrality =
$$\frac{p_T^{j_1} - p_T^{j_2}}{E^{j_1} + E^{j_2}}$$
;

34.
$$\left| \frac{y(j_1) + y(j_2)}{2(y(j_1) - y(j_2))} \right|$$

Highlighted variables were used to create the classifiers

3rd jet information variables

- 1. m_{jjj} ;
- 2. j_3 -centrality= $\left| \frac{y(j_3) \frac{y(j_1) + y(j_2)}{2}}{y(j_1) y(j_2)} \right|$;
- 3. $\Delta Y(j_1, j_3)$;
- 4. $\Delta Y(j_2, j_3)$;
- 5. $\Delta Y(\gamma, j_3)$;
- 6. $\Delta R(j_1, j_3)$;
- 7. $\Delta R(j_2, j_3)$;
- 8. $\Delta R(\gamma, j_3)$;
- 9. $\Delta R(\vec{p}_T^{\text{miss}}, j_3)$;
- 10. $m(\vec{p}_T^{\text{miss}}, j_3);$
- 11. $m(\gamma, j_3)$;

Highlighted variables were used to create the classifiers

Selected 3rd jet variables distributions

Variable selection. Nominal

Variable selection. 3rd jet

