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The ‚holy grail‘ of heavy-ion physics:  Phase diagramm of QCD

The phase diagram of QCD
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Experimental observables:
... Clusters and (anti-) hypernuclei

ALICE,  NPA 971, 1 (2018)

High energy HIC: 
‚Ice in a fire‘ puzzle:
how the weakly bound 
objects can be formed 
and survive in a hot 
enviroment ?!

 projectile/target spectators heavy cluster formation
 midrapidity light clusters

IQMD: Ch. Hartnack

FOPI, NPA 848, 366

Au+Au, central
midrapidity

 Clusters are very 
abundant at low energy

(Anti-) hypernuclei production:
- at mid-rapidity by coalescence of Λ with nucleons
during expansion

- at projectile/target rapidity by rescattering/absorption 
of Λ by spectators 

! Hyperons are created in participant zone



Existing models for clusters formation: 

 statistical model:
- assumption of thermal equilibrium 

 coalescence model:
- determination of clusters at a given time 
by coalescence radii in coordinate and 
momentum space

 don‘t provide information on the dynamical 
origin of clusters formation
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Modeling of cluster and hypernuclei formation

A. Andronic et al., PLB 697, 203 (2011)

In order to understand the microscopic origin of cluster formation one 
needs a realistic model for the dynamical time evolution of the HIC 

 transport models:
- dynamical modeling of cluster formation based on interactions



PHQMD
PHQMD: a unified n-body microscopic transport approach for the description of 
heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic 
energies 
Realization: combined model PHQMD = (PHSD & QMD)  &  (MST/SACA)

timeQMD&PHSD MST/SACA

Parton-Hadron-Quantum-Molecular Dynamics

Initialization  propagation of baryons: 
QMD (Quantum-Molecular Dynamics)

Propagation of partons (quarks, gluons) and mesons 
+ collision integral = interactions of hadrons and partons (QGP) 

from PHSD (Parton-Hadron-String Dynamics) 

Clusters recognition:
SACA (Simulated Annealing Clusterization Algorithm)

or MST (Minimum Spanning Tree)
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J. Aichelin et al., 
PRC 101 (2020) 044905
&  arXiv:1907.03860 



QMD propagation

Hamiltonian:

 Generalized Ritz variational principle:

Assume that                                                  for N particles (neglecting antisymmetrization !) 

Ansatz: trial wave function for one particle “i” :  
Gaussian with width L centered at 0 0,i ir p

 Equations-of-motion (EoM) for Gaussian centers in coordinate and 
momentum space:

L=4.33 fm2

5



QMD interaction potential and EoS

The expectation value of the Hamiltonian:

 Skyrme potential (‘static’) * :

 modifed interaction density (with relativistic extension):

o compression modulus K of nuclear 
matter:

*Work in progress: implementation of momentum dependent potential (M. Winn) 

EoS for infinite matter at rest

 HIC  EoS for infinite matter at rest
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Highlights: PHQMD ‚bulk‘ dynamics from SIS to RHIC
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PHQMD: J. Aichelin et al.,  PRC 101 (2020) 044905 

PHQMD provides a good description of hadronic ‘bulk’ observables from SIS to RHIC energies



Cluster recognition: Minimum Spanning Tree (MST)
R. K. Puri, J. Aichelin, J.Comp. Phys. 162 (2000) 245-266

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the 
(asymptotic) final states where coordinate space correlations may only survive for 
bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

1. Two particles are ‘bound’ if their distance in the cluster rest frame fulfills

2.   Particle is bound to a cluster if 
it bounds with at least one particle
of the cluster.

* Remark: 
inclusion of an additional momentum cuts 
(coalescence) lead to a small changes:
particles with large relative momentum
are mostly not at the same position
(V. Kireyeu, 2103.10542)
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| 𝑟𝑟𝑖𝑖 - 𝑟𝑟𝑗𝑗 | ≤ 4 fm



Cluster stability in semi-classical models
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Limitation of semi-classical models (as QMD): 

 Clusters in QMD are semiclassical bound objects (with a binding energy close
to the Weizsäcker mass formula) but not quantum system with a defined ground state

 In bound QMD clusters kinetic energy can be therefore accumulated by one of the 
nucleons which may escape (what is not possible in a quantum cluster) 

We have therefore to fix a time at which we analyse the clusters. This choice  
influences the multiplicity. We verified that it does not influence the form of

- the rapidity distribution
- the pt distribution
- ratio of particles

To compare the PHQMD results at different rapidities we have to chose the  
same ‘physical time’ :

t = t0 cosh(y) 

where t0 is the time taken at y=0 (in the center-of-mass system) to compensate 
for the time dilatation



Cluster production in HIC at AGS energies

y- distributions of d, t, 3He
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The PHQMD results 
are taken at 
t = t0cosh(y),
where t0 is the time 
at y=0

pT - distribution of deuterons
Au+Pb@10.6 AGeV Au+Pb@10.6 AGeV



Cluster production in HIC at AGS energies

The pT - distributions of  t and 3He from Au+Pb at 10.6 A GeV
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3Het



Cluster production in HIC at SPS energies

The rapidity distributions of d and 3He from Pb+Pb at 30 A GeV
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The PHQMD results for d and 3He agree with NA49 data

d 3He



Cluster production in HIC at SPS energies

The pT - distributions of  d and 3He from Pb+Pb at 30 A GeV
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d 3He



Excitation function of multiplicity of p, �𝒑𝒑,d, �𝒅𝒅
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The p, �𝒑𝒑 yields at y~0 are stable, the d, �𝒅𝒅 yields are better described at t= 60-70 fm/c



The PHQMD excitation function of cluster 
production versus thermal model
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Comparison of the 
PHQMD results for 
Cluster and 
hypernuclei 3HΛ
with thermal model
and NA49 data

Thermal model:
A. Andronic et al., PLB 697 (2011) 203 

3He 4He

p d

�𝒑𝒑

�𝒅𝒅

3HeΛ



Deuteron pT spectra from 7.7GeV to 200 GeV
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Comparison of the 
PHQMD results for 
the deuteron
pT -spectra at 
midrapidity 
with STAR data

d



Coalescence parameter B2 for deuterons
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Comparison of the PHQMD results 
with NA49 and STAR data

central Au+Au collisions
Coalescence parameter B2:

d

d

d

Central Pb+Pb, s1/2 = 8.8 GeV



Hypernuclei production at s1/2 = 3 GeV  

The PHQMD comparison with most recent STAR
fixed target pT distribution of 3HΛ, 4HΛ from 
Au+Au central collisions at 𝒔𝒔 =3 GeV
 Assumption on nucleon-hyperon potential: 

VNΛ = 2/3 VNN
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Star data preliminary

Good description in view
of these very complex
hypernuclei



Hypernuclei production at s1/2 = 8.8 GeV  

The PHQMD predictions on the rapidity distribution of 3HΛ, 4HΛ and 4HeΛ
from Pb+Pb central collisions at 30 A GeV (s1/2 = 8.8 GeV)
 Assumption on nucleon-hyperon potential: VNΛ = 2/3 VNN
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Central Pb+Pb, s1/2 = 8.8 GeV



When does the system freeze out?  

 The normalized distribution of the freeze-out time of baryons (nucleons and 
hyperons) which are finally observed at mid-rapidity |y|<0.5

* Here freeze-out time as defined as a last elastic or inelastic collision, 
after that only potential interaction between baryons occurs
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 Freeze-out time of baryons in Au+Au at 1.5 AGeV and 40 AGeV:
 similar profile since expansion velocity of mid-rapidity fireball is roughly 

independent of the beam energy



Where are the clusters formed? 

 The snapshot (taken at time 30 and 70 fm/c) of the normalized distribution of 
the transverse distance rT of the nucleons to the center of the fireball. 

 It is shown for A=1 (free nucleons) and for the nucleons in A=2 and A=3 
clusters 
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A=1 : free N

A=2

A=3
30 fm/c

70 fm/c

 Transverse distance profile of free nucleons and clusters are different!
Clusters are mainly formed behind the “front” of free nucleons of the
expanding fireball



Where are the clusters formed? 
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 The conditional probability P(A) that the nucleons, which are finally observed in 
A=2 clusters at time 135 fm/c, were at time t the members of A=1 (free nucleons), 
A=2 or A=3 clusters

 Stable clusters (observed at 135 fm/c) are formed shortly after the dynamical 
freeze-out 

A=2

A=1; 
free NA=3

A = 1+2+3 

A=1; 
free N

A=3

A = 1+2+3 A=2
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Summary

The PHQMD is a microscopic n-body transport approach for the description of 
heavy-ion dynamics and cluster formation 
Clusters are identified by Minimum Spanning Tree model

combined model  PHQMD =  (PHSD & QMD) & (MST | SACA )

- provides the good description of ‘bulk’ observables from SIS to RHIC energies  

- predicts the dynamical formation of clusters from SIS to RHIC energies
due to the interactions among the nucleons

- reproduces cluster data on dN/dy and dN/dpT as well as ratios d/p and �𝒅𝒅/�𝒑𝒑 for
HI collisions from AGS to top RHIC energies. 

A detailed analysis reveals that clusters are formed
- shortly after elastic and inelastic collisions have ceased
- behind the front of the expanding energetic hadrons
- since the ‘fire’ is not at the same place as the ‘ice’, cluster can survive.

Outlook: 
- extension to LHC energies and study of hyper-nuclei with more realistic potentials



Thank you for your attention !

Thanks to the Organizers !



PHQMD: light clusters and ‚bulk‘ dynamics at SIS  

Scaled rapidity distribution y0 =y/yproj in central Au+Au reactions at 1.5 AGeV

Z=1

protons

 30% of protons are bound in clusters at 1.5 A GeV 
 Presently MST is better identifying light clusters than SACA
 To improve in SACA:  more realistic potentials for small clusters, quantum effects

 Pion spectra are sensitive to EoS: better reproduced by PHQMD with a ‘hard’ EoS
 PHQMD with soft EoS is consistent with PHSD (default – soft EoS)

* To improve in PHQMD: momentum dependent potentials
25



26

Cluster formation: QMD vs MF 

 Cluster formation is sensitive to nucleon dynamics

 One needs to keep the nucleon correlations (initial and final) by realistic 
nucleon-nucleon interactions in transport models:

 QMD (quantum-molecular dynamics) – allows to keep correlations                      
 MF (mean-field based models) – correlations are smeared out
 Cascade – no correlations by potential interactions

V. Kireyeu, 2103.10542

QMD:

MF:

Cascade:

Example: Cluster stability over time:



PHQMD: light clusters at AGS energies
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The invariant multiplicities for p, d, t, 3He, 4He at pT <0.1 GeV versus rapidity

Au+Au, 11 AGeV, 10% central                             Au+Au, 11 AGeV, minimal bias

PHQMD: clusters recognition by MST provides a reasonable description of exp. 
data on light clusters at AGS energies 



PHQMD with SACA shows an agreement 
with ALADIN data for very complex cluster 
observables as 
 Largest clusters (Zbound)
 Energy independent ‘rize and fall’
 Rms p2

T

PHQMD: heavy clusters  
Heavy clusters (spectator fragments): experim. measured 
up to Ebeam =1 AGeV (ALADIN Collab.) 

PHQMD shows                       dependence 
as exp. data 28



PHQMD: hypernuclei   
PHQMD results (with a hard EoS and MST algorithm) for the rapidity distributions of all charges, 
Z = 1 particles, Z=2, Z>2, as well as Λ’s, hypernuclei A<4 and A>4 for Au+Au at 4 and 10AGeV

The multiplicity of light hypercluster vs.
impact parameter b for Au+Au, 4 AGeV  Central collisions  light hypernuclei

 Peripheral collisions  heavy hypernuclei

Penetration of Λ’s, produced at midrapidity, 
to target/projectile region
due to rescattering

 Possibility to study ΛN interaction
29



PHQMD: collectivity of clusters

 v1 : quite different for nucleons and 
clusters (as seen in experiments) 

 Nucleons come from participant 
regions ( small density gradient) 
while clusters from interface 
spectator-participant (strong density 
gradient )

 v1 increases with Ebeam
  larger density gradient

PHQMD with hard EoS, with SACA:
v1 of light clusters (A=1,2,3,4) vs rapidity 
for mid-central Au+Au at 600 AMeV, 4AGeV
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Au+Au, 600 AMeV

Au+Au, 4 AGeV



Existing models for clusters formation: 

 statistical model:
- assumption of thermal equilibrium 

 coalescence model:
- determination of clusters at a given time by 
coalescence radii in coordinate and momentum spaces

 don‘t provide information on the dynamics of clusters 
formation
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Modeling of cluster and hypernuclei formation

A. Andronic et al., PLB 697, 203 (2011)

In order to understand a microscopic origin of cluster formation one needs 
a realistic model for the dynamical time evolution of the HIC  
 transport models:
- dynamical modeling of cluster formation based on interactions

 Cluster formation is sensitive to nucleon dynamics
 One needs to keep the nucleon correlations (initial and final) by realistic 

nucleon-nucleon interactions in transport models:
 QMD (quantum-molecular dynamics) – allows to keep correlations
 MF (mean-field based models) – correlations are smeared out



Where are the clusters formed? 
 The normalized distribution of the transverse distance of the nucleons, 

observed at midrapidity  (A=1,2,3)
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 The probability distribution P(A) of the formation time of clusters at midrapidity 
- the probabilities that the finally observed A = 2 cluster has been at time t a part
of  A=1 (free nucleons), A=2 or A=3 clusters

A=1 : free N
A=2

A=3 30 fm/c

70 fm/c

 Stable clusters are formed during dynamical freeze-out 

A=2

A=1; 
free N

A=3

final A = 2 



Cluster stability in semi-classical models
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Problems of the semi-classical models (as QMD): 
QMD cannot project the n-body density on the ground state of a cluster as a quantum 
system of fermions
Quantum ground state has to respect a minimal average kinetic energy of the nucleons 
while the semi-classical (QMD) ground state  - not!

 nucleons may still be emitted from the clusters even if in the corresponding 
quantum system this is not possible anymore
= QMD clusters are not fully stable over time
 the multiplicity of clusters is time dependent

In this study the PHQMD results are taken at 
‘physical time’ :

t = t0 cosh(y) 
where t0 is the time selected as a best 
description of the cluster multiplicity at y=0 



Excitation function of multiplicity of p, �𝒑𝒑,d, �𝒅𝒅
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The p, �𝒑𝒑 yields at y~0 are stable, the d, �𝒅𝒅 yields are better described at t= 60-70 fm/c



Coalescence parameter B2 for deutrons
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Comparison of the PHQMD results 
with NA49 and STAR data

central Au+Au collisionsCoalescence parameter B2:

d

d

d
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Summary

The PHQMD is a microscopic n-body transport approach for the description of 
heavy-ion dynamics and cluster formation
Clusters are identified by Minimum Spanning Tree model

combined model  PHQMD =  (PHSD & QMD) & (MST | SACA )

PHQMD 
- provides the good description of hadronic ‘bulk’ observables

from SIS to RHIC energies  

- predicts the dynamical formation of clusters from low to ultra-relativistic energies
due to the interactions

- allows to study the origin as well as the properties of cluster formation 
(rapidity and pT spectra) 

- allows to study the formation of hypernuclei originated from ΛN interactions
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