

Deutsche

Ice in the Fire puzzle: Dynamical cluster and hypernuclei production in heavy-ion collisions

Forschungsgemeinschaft

Joerg Aichelin

(SUBATECH, Nantes)

8

Susanne Glaessel, Viktar Kireyeu,, Elena Bratkovskaya, Vadym Voronyuk, Christoph Blume, Gabriele Coci, Vadim Kolesnikov, Michael Winn

(Uni. Frankfurt & GSI, Darmstadt & SUBATECH, Nantes & JINR, Dubna)

The ,holy grail' of heavy-ion physics: Phase diagramm of QCD

The phase diagram of QCD

Clusters are very abundant at low energy

- projectile/target spectators → heavy cluster formation
- midrapidity → light clusters

! Hyperons are created in participant zone

(Anti-) hypernuclei production:

at mid-rapidity by coalescence of
 \Lambda
 with nucleons during expansion

- at projectile/target rapidity by rescattering/absorption

of Λ by spectators

High energy HIC: ,Ice in a fire' puzzle: how the weakly bound objects can be formed and survive in a hot enviroment ?!

Modeling of cluster and hypernuclei formation

Existing models for clusters formation:

- □ statistical model:
 - assumption of thermal equilibrium
- **□** coalescence model:
 - determination of clusters at a given time by coalescence radii in coordinate and momentum space
- → don't provide information on the dynamical origin of clusters formation

In order to understand the microscopic origin of cluster formation one needs a realistic model for the dynamical time evolution of the HIC

- → transport models:
- dynamical modeling of cluster formation based on interactions

PHQMD

PHQMD: a unified n-body microscopic transport approach for the description of heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic energies

Realization: combined model PHQMD = (PHSD & QMD) & (MST/SACA)

Parton-Hadron-Quantum-Molecular Dynamics

Initialization → propagation of baryons: QMD (Quantum-Molecular Dynamics)

Propagation of partons (quarks, gluons) and mesons
+ collision integral = interactions of hadrons and partons (QGP)
from PHSD (Parton-Hadron-String Dynamics)

Clusters recognition:

SACA (Simulated Annealing Clusterization Algorithm) or MST (Minimum Spanning Tree)

J. Aichelin et al., PRC 101 (2020) 044905 & arXiv:1907.03860

QMD propagation

Assume that
$$\psi_N = \prod_{i=1}^N \psi_i(q_i,q_{0i},p_{0i})$$
 for N particles (neglecting antisymmetrization !)

Ansatz: trial wave function for one particle "i":

Gaussian with width L centered at r_{i0} , p_{i0}

$$\psi_i(q_i,q_{0i},p_{0i}) = Cexp[-(q_i-q_{0i}-\frac{p_{0i}}{m}t)^2/4L] \cdot exp[ip_{0i}(q_i-q_{0i})-i\frac{p_{oi}^2}{2m}t]$$
 L=4.33 fm²

■ Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

$$\dot{r_{i0}} = \frac{\partial \langle H \rangle}{\partial p_{i0}}$$
 $\dot{p_{i0}} = -\frac{\partial \langle H \rangle}{\partial r_{i0}}$

Hamiltonian:
$$H = \sum_i H_i = \sum_i (T_i + V_i) = \sum_i (T_i + \sum_{j \neq i} V_{i,j})$$
$$V_{i,j} = V(\mathbf{r_i}, \mathbf{r_j}, \mathbf{r_{i0}}, \mathbf{r_{j0}}, t) = V_{\text{Skyrme}} + V_{\text{Coul}}$$

QMD interaction potential and EoS

The expectation value of the Hamiltonian:

$$\langle H \rangle \ = \ \langle T \rangle + \langle V \rangle = \ \sum_{i} (\sqrt{p_{i0}^2 + m^2} - m) + \sum_{i} \langle V_{Skyrme}(\mathbf{r_{i0}}, t) \rangle$$

Skyrme potential ('static') *:

$$\langle V_{Skyrme}(\mathbf{r_{i0}},t)\rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right) + \beta \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right)^{\gamma}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
5 555 525 1.11		$\alpha \; ({\rm MeV})$	$\beta \text{ (MeV)}$	γ	K [MeV]
H -130 59 2.09 380	\overline{S}	-390	320	1.14	200
	Н	-130	59	2.09	380

modified interaction density (with relativistic extension):

$$\rho_{int}(\mathbf{r_{i0}}, t) \rightarrow C \sum_{j} \left(\frac{4}{\pi L}\right)^{3/2} e^{-\frac{4}{L}(\mathbf{r_{i0}^{T}}(t) - \mathbf{r_{j0}^{T}}(t))^{2}} \times e^{-\frac{4\gamma_{cm}^{2}}{L}(\mathbf{r_{i0}^{L}}(t) - \mathbf{r_{j0}^{L}}(t))^{2}},$$

- $HIC \leftarrow \rightarrow EoS$ for infinite matter at rest
- compression modulus K of nuclear matter:

$$K = -V \frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A(\rho))}{(\partial \rho)^2} |_{\rho = \rho_0}$$

Highlights: PHQMD ,bulk' dynamics from SIS to RHIC

Cluster recognition: Minimum Spanning Tree (MST)

R. K. Puri, J. Aichelin, J.Comp. Phys. 162 (2000) 245-266

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the (asymptotic) final states where coordinate space correlations may only survive for bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

1. Two particles are 'bound' if their distance in the cluster rest frame fulfills

$$|\overrightarrow{r_i} - \overrightarrow{r_j}| \leq 4 \text{ fm}$$

2. Particle is bound to a cluster if it bounds with at least one particle of the cluster.

inclusion of an additional momentum cuts (coalescence) lead to a small changes: particles with large relative momentum are mostly not at the same position (V. Kireyeu, 2103.10542)

^{*} Remark:

Cluster stability in semi-classical models

Limitation of semi-classical models (as QMD):

- ☐ Clusters in QMD are semiclassical bound objects (with a binding energy close to the Weizsäcker mass formula) but not quantum system with a defined ground state
- In bound QMD clusters kinetic energy can be therefore accumulated by one of the nucleons which may escape (what is not possible in a quantum cluster)
- → We have therefore to fix a time at which we analyse the clusters. This choice influences the multiplicity. We verified that it does not influence the form of
 - the rapidity distribution
 - the pt distribution
 - ratio of particles

To compare the PHQMD results at different rapidities we have to chose the same 'physical time':

$$t = t_0 \cosh(y)$$

where t_0 is the time taken at y=0 (in the center-of-mass system) to compensate for the time dilatation

Cluster production in HIC at AGS energies

y- distributions of d, t, ³He

p_T - distribution of deuterons

The PHQMD results are taken at $t = t_0 cosh(y)$, where t_0 is the time at y=0

Cluster production in HIC at AGS energies

The p_T - distributions of t and ³He from Au+Pb at 10.6 A GeV

Cluster production in HIC at SPS energies

The rapidity distributions of d and ³He from Pb+Pb at 30 A GeV

■ PHQMD

The PHQMD results for d and ³He agree with NA49 data

Cluster production in HIC at SPS energies

The p_T - distributions of d and ³He from Pb+Pb at 30 A GeV

Excitation function of multiplicity of p, \overline{p} , d, \overline{d}

The p, \overline{p} yields at y~0 are stable, the d, \overline{d} yields are better described at t= 60-70 fm/c

The PHQMD excitation function of cluster production versus thermal model

Comparison of the PHQMD results for Cluster and hypernuclei ${}^{3}H_{\Lambda}$ with thermal model and NA49 data

Thermal model: A. Andronic et al., PLB 697 (2011) 203

Deuteron p_T spectra from 7.7GeV to 200 GeV

Comparison of the PHQMD results for the deuteron p_T-spectra at midrapidity with STAR data

Coalescence parameter B₂ for deuterons

Coalescence parameter B₂:

$$B_2 = \frac{E_d \frac{d^3 N_d}{d^3 P_d}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}|_{p_p = P_d/2}\right)^2}$$

Comparison of the PHQMD results with NA49 and STAR data

central Au+Au collisions

Hypernuclei production at $s^{1/2} = 3$ GeV

The PHQMD comparison with most recent STAR fixed target p_T distribution of ${}^3H_{\Lambda}$, ${}^4H_{\Lambda}$ from Au+Au central collisions at $\sqrt{s}=3$ GeV

Assumption on nucleon-hyperon potential:
 V_{NA} = 2/3 V_{NN}

Star data preliminary

Good description in view of these very complex hypernuclei

Hypernuclei production at $s^{1/2} = 8.8$ GeV

The PHQMD predictions on the rapidity distribution of ${}^{3}H_{\Lambda}$, ${}^{4}H_{\Lambda}$ and ${}^{4}He_{\Lambda}$ from Pb+Pb central collisions at 30 A GeV (s^{1/2} = 8.8 GeV)

• Assumption on nucleon-hyperon potential: $V_{N\Lambda} = 2/3 V_{NN}$

When does the system freeze out?

- The normalized distribution of the freeze-out time of baryons (nucleons and hyperons) which are finally observed at mid-rapidity |y|<0.5</p>
- * Here freeze-out time as defined as a last elastic or inelastic collision, after that only potential interaction between baryons occurs

- → Freeze-out time of baryons in Au+Au at 1.5 AGeV and 40 AGeV:
- similar profile since expansion velocity of mid-rapidity fireball is roughly independent of the beam energy

Where are the clusters formed?

- □ The snapshot (taken at time 30 and 70 fm/c) of the normalized distribution of the transverse distance r_T of the nucleons to the center of the fireball.
- It is shown for A=1 (free nucleons) and for the nucleons in A=2 and A=3 clusters

→ Transverse distance profile of free nucleons and clusters are different! Clusters are mainly formed behind the "front" of free nucleons of the expanding fireball

Where are the clusters formed?

□ The conditional probability P(A) that the nucleons, which are finally observed in A=2 clusters at time 135 fm/c, were at time t the members of A=1 (free nucleons), A=2 or A=3 clusters

→ Stable clusters (observed at 135 fm/c) are formed shortly after the dynamical freeze-out

Summary

The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster formation
Clusters are identified by Minimum Spanning Tree model

combined model PHQMD = (PHSD & QMD) & (MST | SACA)

- provides the good description of 'bulk' observables from SIS to RHIC energies
- predicts the dynamical formation of clusters from SIS to RHIC energies due to the interactions among the nucleons
- reproduces cluster data on dN/dy and dN/dp_T as well as ratios d/p and $\overline{d/p}$ for HI collisions from AGS to top RHIC energies.

A detailed analysis reveals that clusters are formed

- shortly after elastic and inelastic collisions have ceased
- behind the front of the expanding energetic hadrons
- since the 'fire' is not at the same place as the 'ice', cluster can survive.

Outlook:

- extension to LHC energies and study of hyper-nuclei with more realistic potentials

Thank you for your attention!

Thanks to the Organizers!

PHQMD: light clusters and ,bulk' dynamics at SIS

Scaled rapidity distribution $y_0 = y/y_{proj}$ in central Au+Au reactions at 1.5 AGeV

- > 30% of protons are bound in clusters at 1.5 A GeV
- Presently MST is better identifying light clusters than SACA
 - → To improve in SACA: more realistic potentials for small clusters, quantum effects
- Pion spectra are sensitive to EoS: better reproduced by PHQMD with a 'hard' EoS
- □ PHQMD with soft EoS is consistent with PHSD (default soft EoS)
 - * To improve in PHQMD: momentum dependent potentials

Cluster formation: QMD vs MF

- □ Cluster formation is sensitive to nucleon dynamics
- → One needs to keep the nucleon correlations (initial and final) by realistic nucleon-nucleon interactions in transport models:
- QMD (quantum-molecular dynamics) allows to keep correlations
- MF (mean-field based models) correlations are smeared out
- Cascade no correlations by potential interactions

Example: Cluster stability over time:

V. Kireyeu, 2103.10542

PHQMD: light clusters at AGS energies

The invariant multiplicities for p, d, t, 3 He, 4 He at p_T <0.1 GeV versus rapidity

PHQMD: clusters recognition by MST provides a reasonable description of exp. data on light clusters at AGS energies

PHQMD: heavy clusters

Heavy clusters (spectator fragments): experim. measured

up to E_{beam} =1 AGeV (ALADIN Collab.)

PHQMD with SACA shows an agreement with ALADIN data for very complex cluster observables as

- Largest clusters (Z_{bound})
- Energy independent 'rize and fall'
- \square Rms p_T^2

$$Z_{\text{bound 2}} = \sum_{i} Z_{i} \Theta(Z_{i} - (1 + \epsilon))$$

$$(\epsilon < 1)$$

PHQMD shows $\sqrt{p_T^2(Z)} \propto \sqrt{Z}$ dependence as exp. data

PHQMD: hypernuclei

PHQMD results (with a hard EoS and MST algorithm) for the rapidity distributions of all charges, Z = 1 particles, Z=2, Z>2, as well as Λ 's, hypernuclei A<4 and A>4 for Au+Au at 4 and 10AGeV

The multiplicity of light hypercluster vs. impact parameter b for Au+Au, 4 AGeV

- Central collisions → light hypernuclei
 - Peripheral collisions -> heavy hypernuclei

Penetration of Λ 's, produced at midrapidity, to target/projectile region due to rescattering

→ Possibility to study \(\Lambda\)N interaction

PHQMD: collectivity of clusters

PHQMD with hard EoS, with SACA: v₁ of light clusters (A=1,2,3,4) vs rapidity for mid-central Au+Au at 600 AMeV, 4AGeV

- □ v₁: quite different for nucleons and clusters (as seen in experiments)
- Nucleons come from participant regions (→ small density gradient) while clusters from interface spectator-participant (strong density gradient)
- □ v₁ increases with E_{beam}
- □ → larger density gradient

Modeling of cluster and hypernuclei formation

Existing models for clusters formation:

- statistical model:
 - assumption of thermal equilibrium
- coalescence model:
 - determination of clusters at a given time by coalescence radii in coordinate and momentum spaces
- → don't provide information on the dynamics of clusters formation

A. Andronic et al., PLB 697, 203 (2011)

In order to understand a microscopic origin of cluster formation one needs a realistic model for the dynamical time evolution of the HIC

- → transport models:
- dynamical modeling of cluster formation based on interactions
 - ☐ Cluster formation is sensitive to nucleon dynamics
 - → One needs to keep the nucleon correlations (initial and final) by realistic nucleon-nucleon interactions in transport models:
 - QMD (quantum-molecular dynamics) allows to keep correlations
 - MF (mean-field based models) correlations are smeared out

Where are the clusters formed?

□ The normalized distribution of the transverse distance of the nucleons, observed at midrapidity (A=1,2,3)

The probability distribution P(A) of the formation time of clusters at midrapidity

 the probabilities that the finally observed A = 2 cluster has been at time t a part
 of A=1 (free nucleons), A=2 or A=3 clusters

→ Stable clusters are formed during dynamical freeze-out

Cluster stability in semi-classical models

Problems of the semi-classical models (as QMD):

QMD cannot project the n-body density on the ground state of a cluster as a quantum system of fermions

Quantum ground state has to respect a minimal average kinetic energy of the nucleons while the semi-classical (QMD) ground state - not!

- → nucleons may still be emitted from the clusters even if in the corresponding quantum system this is not possible anymore
- **= QMD** clusters are not fully stable over time
- → the multiplicity of clusters is time dependent

In this study the PHQMD results are taken at 'physical time':

 $t = t_0 \cosh(y)$

where t₀ is the time selected as a best description of the cluster multiplicity at y=0

Excitation function of multiplicity of p, \overline{p} , d, \overline{d}

The p, \overline{p} yields at y~0 are stable, the d, \overline{d} yields are better described at t= 60-70 fm/c

Coalescence parameter B₂ for deutrons

Coalescence parameter B₂:

$$B_2 = \frac{E_d \frac{d^3 N_d}{d^3 P_d}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}|_{p_p = P_d/2}\right)^2}$$

Comparison of the PHQMD results with NA49 and STAR data

central Au+Au collisions

Summary

The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster formation
Clusters are identified by Minimum Spanning Tree model

combined model PHQMD = (PHSD & QMD) & (MST | SACA)

PHQMD

- provides the good description of hadronic 'bulk' observables from SIS to RHIC energies
- predicts the dynamical formation of clusters from low to ultra-relativistic energies due to the interactions
- allows to study the origin as well as the properties of cluster formation (rapidity and p_T spectra)
- allows to study the formation of hypernuclei originated from ΛN interactions