Muon Energy Regression from Radiative Losses in a Granular Calorimeter

ICNFP 2021

Jan Kieseler, Giles Strong, Filippo Chiandotto, Tommaso Dorigo, <u>Lukas Layer</u>

Motivation

- Muons are important as a clean probe for new physics searches & measurements
- Excellent energy resolution will be crucial for the search of new physics phenomena at future highenergy colliders
- Energy estimates determined by curvature of the muon trajectory in trackers
- But: radius of curvature increases with energy → tracker gives poor resolution at high energy since relative uncertainty scales linearly with E
- Relative uncertainty of calorimetric measurements decreases with √ E if the particles are completely absorbed

Can we improve muon energy measurements with calorimeters?

Energy loss of muons

- At high energy, muons do not behave as minimum ionising particles
- Rise of radiative energy loss above roughly 100GeV
- But radiation still low → radiative losses so far not exploited to estimate energy in collider detectors
- Recording the low-energy photons in a granular calorimeter can provide a complementary measurement of the muon energy

Idea: regress muon energy from energy deposits in calorimeter using modern ML techniques

Simulated data

Detector

- Homogeneous lead tungstate cuboid calorimeter
- **Dimensions**: 2032x120x120 mm (z,x,y) subdivided into 39.6x3.75x3.75 mm cells
- Number of cells: 50x32x32 (z,x,y) = 51.200 cells
- Calorimeter embedded in a uniform ATLAS like 2-Tesla magnetic field

Muons

- Interaction of the muons with the detector material is simulated using GEANT4
- Muons are unpolarized with uniform energy in z-direction between 50GeV and 8TeV
- ~850k muons are generated for training and validation
- ~430.000 muons are generated for testing with discrete energy in 400 GeV steps in 100-4100 GeV

Muon regression strategy

Muon in the detector

- Energy deposits concentrated along flight path
- Large number of low-energy deposits
- Relatively sparse hits

- Due to stochastic nature of radiation we cannot simply rescale the reconstructed energy sum to true energy
- → Build high-level features with our domain knowledge by using spatial information of the energy deposits
- → Exploit the raw-hit data of the calorimeter cells with 3D Convolutional Neural Networks to learn to predict the muon energy - this can also be combined with the high-level features

High level features I: Clustering

Photons producing showers by pair production will produce a signal in multiple cells → decipher the pattern of emitted radiation by aggregating the granular cell-based information into clusters

Clustering algorithm

- The algorithm starts with the **highest energy cell** as a seed belonging to the column of **same** transverse coordinates x and y of the incident muon if the cell fulfills E_{thr} > 0.1 GeV
- Adjacent cells with non-null energy deposition are progressively added to form a cluster
- The **final cluster** is formed when there are **no more adjacent cells** with non-null energy to be added and the algorithm is repeated with the remaining cells
- Once all clusters are formed, a **second set of clusters** is constructed using cells yet unassigned with **seeds irrespective of the x, y coordinates**
- Compute features like number of clusters per muon / maximum number of cells per cluster

High level features II

- E-sum features: sum up energies in different intervals of cell energies
- Energy 1st / 2nd moments in x & y
- Energy spread for range of z depths
- Construct features sensitive to curvature
- Missing transverse energy
- In total 28 high level features

V[0] Total energy in cells above 0.1 GeV

V[26] Total energy in cells below 0.01 GeV

Muon regression model

3D Convolutional Neural Networks

- Apply a 3 dimensional filter to the data
- Filter moves in (x, y, z) direction to calculate the feature representations
- Output shape is a 3 dimensional volume space

Muon regression model scheme

- Convolutional head: series of 3D convolutional layers (blocks) that exploits the 3D grid of energy deposits
- Network body: set of fully-connected layers with single neuron output
- Pre-computed high-level features are passed directly to the body

CNN block

- 3D CNN architecture aims to learn small corrections to the reconstructed energy
- Correction learnt by residual convolutional layers
- Energy sum is concatenated to output → always available to later layers
- Running BatchNorm helps with data sparsity
- Squeeze-excitation block further improves performance

CNN head

- Sets of convolutional blocks are used to construct the full convolutional head
- Deeper networks can be built by by adding in blocks which do not downsample the grid
- Full CNN contains 12 blocks, followed by mean and max aggregation
- 51.200 inputs → **98 features**
- CNN head outputs combined with HL features and fed into the network body

Loss function

Huberised MSE

MFSE

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{n=1}^{N} \frac{(y_n - \hat{y_n})^2}{y_n}$$

- Loss is inspired by linear scaling of the variance of the energy measurement with true energy, as is the case for calorimeter showers
- Huberised version of the mean fractional squared error (MFSE): prevents outliers from dominating the loss by modifying high-loss predictions above a threshold

Training

Data weighting

- Hard boundaries in training data → biased regression response due to edge effects
- Solution: train on 50-8000 GeV muons evaluate on 100-4000 GeV muons and compensate training by down-weighting muons above 4 TeV

Ensemble training

- Train ensemble of 5 models with batchsize of 256 with LUMIN
- Uses Adam optimiser with1-cycle schedule with cosine annealing for 20 epochs
- Training time: 23*5 h on a Nvidia V100S

Regression results

Regressor response

- Regression predictions scale quite linear with true energy
- Tend to slightly over-predict medium energy and under predict high energy

Bias correction

- Correct bias via linear fit to predictions in bins of true energy
- Inversion of fit provides a function to correct the predictions
- Correction is fixed using validation data and then applied to testing data

Resolution and combination with curvature measurement

- Compute resolution as RMSE quadrature of sum of variance and residual bias
- Tracker measurement assumed to have a resolution of 20% @ 1 TeV
- Calorimeter and tracker are complementary → best resolution is a weighted average of both
- The **improvement over tracker** due to calorimetric regression is useable as an **optimisation metric**

Comparison of the ML input

- Quantify improvements of Machine Learning by comparing different models that use
 only the reconstructed energy / only the HL features / only the raw 3D hits / the full model
- High level features improve significantly over using just the energy sum of recorded hits
- 3D CNN model outperforms high-level features
- High level features still beneficial at low energy when the full CNN model is used

High level feature importance

- V[0] E-sum in cells above 0.1 GeV
- V[1] fractional MET
- V[3] overall 2nd moment of transverse E distribution
- V[11] maximum total E in clustered deposits
- V[15] maximum energy of cells excluded from clustered deposits
- V[22] relative 1st moment of E distribution along x-axis
- V[26] E-sum in cells below 0.01 GeV

- Feature importance computed with <u>LUMIN</u>
- Shift in importance between V[0] and V[26] (the sum of energy in cells above 0.1 GeV and below 0.01 GeV)

Related work

Ice cube

- Abasi et al., 2013 & Aartsen et al., 2014: measured muons but with much larger calorimeter (20-times larger in radiation-lengths)
- Resolution 10x poorer than ours in the considered energy range, however their focus is more on higher-energy muons

ATLAS

- Nikolopolous et al. 2007: ATLAS also demonstrated a calorimeter-based method
- Sums up the deposited energy in cones, rather than considering the spatial structure of hits

Conclusions

- We demonstrated that radiative losses in calorimeters can provide muon-energy measurements in collider experiments and achieve good resolution across the full muon-energy spectrum
- First demonstration in the context of particle colliders that utilises the raw hit information of a calorimeter to measure the muon energy
- Calorimetric measurements improve with energy and are complementary to existing tracker measurement approaches
- Can improve the sensitivity and reach of searches for New Physics
- Preprint: Jan Kieseler and Giles C. Strong and Filippo Chiandotto and Tommaso Dorigo and Lukas Layer, Calorimetric Measurement of Multi-TeV Muons via Deep Regression, arxiv:2107.02119