

Future Physics prospects with the CMS detector at the High Luminosity LHC

Chiara Aimè University of Pavia, Italy on behalf of the CMS collaboration

High Luminosity LHC

LHC / HL-LHC Plan

High Luminosity LHC

- Collision energy: 14 TeV
- Instantaneous luminosity: 7.5 10³⁴ Hz/cm² (factor ~5 w.r.t. Run II)
- Integrated luminosity: 3000 fb⁻¹
- Pile up: 200

ICNFP 2021: Chiara Aimè

1

CMS upgrade

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- o HLT output 7.5 kHz
- 40 MHz data scouting

Calorimeter Endcap

https://cds.cern.ch/record/2293646

- 3D shower and precision timing
- Si, Scint+SiPM in Pb/W-SS

Tracker

https://cds.cern.ch/record/2272264/

- Si strips and pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to η~3.8

Talk by Davide Zuolo

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- \circ New GEM/RPC 1.6 < η < 2.4
- Extended coverage to η~3

MIP Timing Detector https://cds.cern.ch/record/2667167 Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

CMS HL-LHC Future Physics

Physics results in

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html

Projected Physics Results

			1,010010		
CMS-PAS-FTR-21-001	Prospects for the measurement of vector boson scattering production in leptonic W [±] W [±] and WZ diboson events a \sqrt{s} = 14 TeV at the High-Luminosity LHC	^{tt} Y(ellow Rej	OOrt ^{July 2021}	
CMS-PAS-FTR-18-040	Search for a new scalar resonance decaying to a pair of Z bosons at the High-Luminosity LHC	(<u>ar</u>)	<u>(iv:1902.10229</u>)	February 2019	
CMS-PAS-FTR-18-037	HL-LHC searches for new physics in hadronic final states with boosted W bosons or top quarks using razor variables	0	Standard	d Model	
CMS-PAS-FTR-18-035	Projection of searches for exotic Higgs boson decays to light pseudoscalars for the High-Luminosity LHC	0	Higgs	February 2019	
CMS-PAS-FTR-18-030	Sensitivity study for a heavy gauge boson W' in the decay channel with a tau lepton and a neutrino at the High- Luminosity LHC	0	Beyond	SM Pebruary 2019	
CMS-PAS-FTR-18-019	Prospects for HH measurements at the HL-LHC	0	Flavour	December 2018	
CMS-PAS-FTR-18-028	Prospects for exclusion or discovery of a third generation leptoquark decaying into a $ au$ lepton and a b quark with the upgraded CMS detector at the HL-LHC	0	High der	nsity	;D
CMS-PAS-FTR-18-027	Constraining nuclear parton distributions with heavy ion collisions at the HL-LHC with the CMS experiment			December 2018	
CMS-PAS-FTR-18-036	Anomalous couplings in the ttZ final state at the HL-LHC			December 2018	
CMS-PAS-FTR-18-029	Search for excited leptons in $\ell\ell\gamma$ final states in proton-proton collisions at the HL-LHC			December 2018	
CMS-PAS-FTR-18-025	Performance of jet quenching measurements in pp and PbPb collisions with CMS at the HL-LHC			December 2018	
CMS-PAS-FTR-18-033	Study of the expected sensitivity to the P_5' parameter in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay at the HL-LHC			December 2018	

Future Physics assumptions

Physics analyses use:

- projections of previous analyses
- o full simulation of Phase 2 detector
- DELPHES simulation

Uncertainties scenarios

- Statistical only
- o Run 2:
 - systematic unchanged
 - statistical scaled as $1/\sqrt{\frac{L}{L_{ref}}}$
- o YR18:
 - theoretical scaled down by a factor 2
 - experimental systematic scaled as $1/\sqrt{\frac{L}{L_{ref}}}$ up to 50%

Uncertainty in integrated luminosity: 1%

SM: *tī* differential cross section

CMS-PAS-FTR-18-015

SM: *tī* differential cross section

PDF constraints from double differential cross section

reduction in b-jet identification

SM: tttt production

With 3 ab⁻¹ cross section constrained to 9% statistical uncertainty and the total uncertainty ranges between 18% and 28%

UNIVERSITÀ DI PAVIA

CMS-PAS-FTR-18-038

The accuracy of the EW WZ cross section measurement is expected to significantly improve down to 5% at 3000 fb⁻¹

The expected uncertainties are consistent with previous studies
Projections for longitudinally polarized W-boson pairs scattering are better (W_LW_L uncertainties: 30-40%)

SM: ZZ VBS and polarized cross section

CMS-PAS-FTR-18-014

CMS-PAS-FTR-18-011

Per-decay-mode signal strength

 μ_{ggH}

 $\mu_{_{\text{VBF}}}$

 μ_{WH}

 μ_{ZH}

 μ_{ttH}

0

CMS-PAS-FTR-18-011

Per-production-mode signal strength

ICNFP 2021: Chiara Aimè

September 2nd, 2021

HH production and self coupling

Channal	Significance		95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$		
Channel	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	
bbbb	0.95	1.2	2.1	1.6	
bb au au	1.4	1.6	1.4	1.3	
bbWW($\ell \nu \ell \nu$)	0.56	0.59	3.5	3.3	
$bb\gamma\gamma$	1.8	1.8	1.1	1.1	
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5	
Combination	2.6	2.8	0.77	0.71	

ICNFP 2021: Chiara Aimè

Expected significance for

BSM: new scalar resonance

CMS-PAS-FTR-18-040

Factor 10 improvement w.r.t. Run2

EW cross section

BSM: supersymmetry

CMS-PAS-FTR-18-010

Direct stau production

BSM: leptoquarks

M_{LO} [GeV]

 At 3 ab⁻¹ vector mediated DM production can be probed up to mediator mass 1.5 TeV
Talk by Sigi Yuan

BSM: dark photon at displaced vertices

25

20

CMS-PAS-FTR-18-002

Phase 2 sensitive to dark photon higher masses and longer lifetimes

ICNFP 2021: Chiara Aimè

10

 10^{-2}

5

10

15

September 2nd, 2021

Conclusions

HL-LHC will significantly increase the physics reach of LHC experiments

 allowing to repeat many important measurements with significantly improved precision

 exploring new processes with extremely low cross sections and branching fractions, hopefully to find new physics