FUTURE PLANS FOR GW DETECTORS

LIGO Scientific Collaboration

PAOLA PUPPO (INFN – ROMA)

LIGO/VIRGO/KAGRA COLLABORATION

 \bigcirc

• 10TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS (ICNFP 2021)

OUTLINE

- CONTEXT AND BACKGROUND
 - GW INTERFEROMETERS: THE CONCEPT
 - THE DATA TAKING RUNS
 - A BRIEF VIEW OF THE MAIN RESULTS (talk of C. Lazzaro for details)
- THE NEXT DATA TAKINGS (O4 AND O5)
- FROM O5 TO THE THIRD GENERATION DETECTORS

GW DETECTOR CONCEPT

Ground-based GW detector

Frequency BW: 10Hz-10kHz Strain amplitude: 10⁻²¹ from astrophysical sources

 \rightarrow 10⁻¹⁸ m displacement on 3-4 km arms

 \rightarrow Main noise sources:

- → Seismic and Thermal noise, Quantum noise, radiation pressure noise
- → Mirrors suspended, big masses, high laser power

DETECTOR SENSITIVITY

MIRRORS: large mass/diameter, good flatness/roughness, low absorption, good homogeneity, good coating uniformity, high Q

SUSPENSIONS: high pendulum Q, monolithic FS suspensions

Paola Puppo – INFN Roma - ICNFP 2021

Limitations to sensitivity

Mirror

geometry/flatness may change the optical gain and, thus, the SHOT NOISE

RADIATION PRESSURE and SUSPENSION THERMAL noises depend on mirror pendulum and mass

Mid-frequency range dominated by COating THERMAL NOISE

Aberrations depend on coating absorption (thermal lensing) and substrate inhomogeneity

Scattered light from flatness/roughness

LIGO Hanford

LIGO Livingston

KAGRA

01

O1: 12 SEP 2015 → 19 JAN 2016

ONLY LIGO DETECTORS

02

Virgo

O2: 30 NOV 2016 \rightarrow 25 AUG 2017 VIRGO JOINED ON 1 AUG 2017 O3A: APR 1 2019 → OCT 1 2019 O3B: NOV 1 2019 → MAY 1 2020 (WITH KAGRA)

O3

DATA TAKING RUNS

LIGO Hanford

LIGO Livingston

GW170817 BNS Mf~ 2.8 Solar Masses 300 ly (r=0.01) EM counterpart observed

GW150914 BBH Mf~ 60 Solar Masses 1.3 Mly (r=0.09)

> TWO GROUND-BREAKING DISCOVERIES A NEW WINDOW IN THE OBSERVATION OF THE UNIVERSE

Virgo

O3 RESULTS

• 🏳 SIGNIFICANT IMPROVEMENT OF THE DETECTION RATE!

• \square MORE DISTANT SOURCES DETECTED (Z ~ 0.5 \rightarrow ~ 0.8)

- 🏳 6 NEW EXCEPTIONAL EVENTS PUBLISHED
- 🏳 BH POPULATION STUDIES

• ^{ID} UPPER LIMITS ON SEVERAL SOURCES AND PHYSICAL EFFECTS (I.E. GW BACKGROUND, LENSING, SPECIFIC DARK MATTER CANDIDATES)

GWTC-2 (Second GW Transient Catalog): STATISTICS, POPULATION STUDIES

- What is the minimum mass of a BH?
- Does the merger rate evolve with z?
- Are there structures in the distribution of masses ?

Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog, LIGO and Virgo Collaborations, The Astrophysical Journal Letters, Vol 913, n. 1 (2021)

Next data takings will give us more useful data:

- ~ hundreds of events in O4
- ~ 1000 events for O5

Paola Puppo – INFN Roma - ICNFP 2021

O3 EXCEPTIONAL EVENTS (1)

GW190412: first observation of a BBH with <u>unequal masses:</u> 8.3 and 30.1 Solar masses **Biggest Mass asymmetry** → observable GW beyond the leading quadrupolar order [Abbott et al. (LIGO/Virgo Coll.), Phys. Rev. D 102, 043015]

GW190814: <u>the most asymmetric mass ratio</u> merger ever observed (m1/m2 = 9) The secondary mass of 2.6 Solar Masses lies in the lower **'mass gap'** either the lightest BH or the heaviest NS ever observed [Abbott et al (LIGO/Virgo Coll.), ApJL 896 L44]

GW190425: <u>BNS merger of total mass</u> of ~3.4 Solar Masses: 2 and 1.4 Solar Masses Significantly larger than any other known **BNS** system, no EM counterpart [Abbott et al (LIGO/Virgo Coll.) ApJL 892 L3]

Secondary mass (M☉)

O3 EXCEPTIONAL EVENTS (2)

GW190521: <u>BBH with component masses ~66 and</u> <u>85 Solar masses</u> First observation of an **intermediate mass BH(IMBH)** formation (Mf ~ 142 Solar Masses). Farthest source so far (z ~ 0.8) [Abbott et al (LIGO/Virgo Coll.) Phys. Rev. Lett. 125, 101102]

Paola Puppo – INFN Roma - ICNFP 2021

GW200105-GW200115: <u>1st certified detection of</u> <u>NSBH (2 events)</u> [Abbott et al (LIGO/Virgo/KAGRA Coll.) ApJL 915 L5]

Secondary mass (M☉)

O3 : LIGO/VIRGO PERFORMANCES

April 2019 \rightarrow March 2020 (1 month before the expected date because of the the COVID pandemic)

SQUEEZING IN VIRGO AND LIGO DURING O3

F. Arcenese, et al. (Virgo Collaboration), Phys. Rev. Lett. 123, 231108 (2019)

M. Tse et al., Phys. Rev. Lett. 123, 231107 (2019)

Paola Puppo – INFN Roma - ICNFP 2021

Gravitational Wave Open Science Center

↑ Data - Software - Online Tools - About GWOSC -

The Gravitational Wave Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.

LIGO Hanford Observatory, Washington (Credits: C. Gray)

LIGO Livingston Observatory, Louisiana (Credits: J. Giaime)

(Credits: Virgo Collaboration)

- GW200105 and GW200115 event data available!
- **Q** New Event Portal Query Page!
- O3 IMBH marginal event data available!
- 🗰 O3a data available!
- Begin with a Learning Path
- Download data
- 🔀 Join the email list
- 🔊 Open Data Workshops

OPEN DATA WWW.GW-OPENSCIENCE.ORG

Open data from the first and second observing runs of Advanced Virgo and Advanced LIGO, Software X, SoftwareX 13 (2021) 10065

1-hour time-series data around each event

Also contains:

- Pointers to analysis software tools;
- Materials from Open Data Workshops;
- Online tutorials

MIDTERM PLANS (UNTIL 2027)

Ligo India will join the network in ~202?

ADV+/A+

Virgo has a phased plan to increase its sensitivity: AdV+

- Phase 1: BNS range from 60 Mpc (O3) to 90-120 Mpc (O4)
- Phase 2: BNS range 150-260 Mpc (O5)

Similar upgrade for Advanced Ligo (A+)

Photodiode 🕑

Paola Puppo – INFN Roma - ICNFP 2021

KAGRA+

KAGRA

- Sapphire mirrors (23 kg)
- 20 K
- Hosted in the Kamioka mine, Gifu prefecture

Kagra+

- Large Sapphire masses (100 kg)
- FD Squeezing (5 dB)
- High power (3.5 kW on BS)

Y. Michimura et al., PRD 102, 022008 (2020)

PLANS FOR THE FUTURE

FROM PRESENT TO 3G

GWIC

GWIC Mission: facilitate international collaboration and cooperation in the construction, operation and use of the major gravitational wave detection facilities world-wide

Subcommittee to look at the 3G in a coordinated way

- D Reitze, M Punturo co-chairs

6 study groups

- » 3G Science Case
- » R&D Coordination
- » Community Networking
- » Agency Interfacing
- » Investigation of Governance Structures
- » Computing (added September 2018)

The GW community is engaged in a coherent effort to develop 3G

POST-O5 STUDY GROUPS IN LIGO AND VIRGO

CHAIRS: PETER FRITSCHEL (MIT) FOR LIGO, VIVIANA FAFONE (ROME 2) AND SAMAYA NISSANKE (UVA) FOR VIRGO

- DELIVERABLES:
 - Report assessing the scenarios and makes recommendations that can form the basis for proposing an upgrade project to be implemented after A+/ADV+
 - Report to be shared with the funding agencies

TIMELINE & PROCESS

- The group engages widely the LSC/VIRGO groups
- Workshop by the end of 2022

REQUESTS TO ASSES:

- Implementations of design choices and technologies to improve sensitivity
- Technical readiness of the options and needed R&D's
- Balance of the observing time against improved sensitivity

LIGO Options for upgrades for A+/AdV+ ((O))//RG Improvements to seismic isolation and mirror suspensions upgrades: to improve the low frequency sensitivity

□Continued improvements to squeezed ligth injection → 10 dB (also for 3G)

Ligo-Voyager designs call for 10 dB

Interferometer modifications for better high frequency sensitivity
Increment of input power

 Larger test masses (>100 kg): reduce radiation pressure noise below 40 hz
 AlGaAs crystalline coatings: another factor 2 lower thermal noise

Paola Puppo - INFN Roma - ICNFP 2021

A COORDINATED WORK

Virgo

Virgo has not been considered a Voyager-like upgrade

- Similar situation as LIGO in terms of the detector possibilities: upgrades to the extisting 1um room temperature
- Fused silica ITF

Study of the possibility to include Stable recycling cavities (already in Ligo)

LIGO

Ligo is considering a Voyager-like upgrade

LIGO India

□ Timeline already uncertain...

KAGRA

VOYAGER

- CONCEPT FOR A NEW DETECTOR IN THE CURRENT FACILITIES;
- DESIGNED TO MAXIMIZE THE OBSERVATIONAL REACH OF THE INFRASTRUCTURE AND DEMONSTRATE THE KEY TECHNOLOGIES TO BE USED FOR 3G OBSERVATORIES IN NEW INFRASTRUCTURES.
- USE HEAVY (CA. 200 KG) CRYOGENIC MIRRORS WITH IMPROVED COATINGS AND UPGRADED SUSPENSIONS MADE OF ULTRA-PURE SILICON AT A TEMPERATURE OF 123 K
- USE THE EXISTING VACUUM ENVELOPE
- A LASER WAVELENGTH OF VOYAGER ~ 1.5 um 2um
- A FURTHER FACTOR OF 3 INCREASE IN BNS RANGE (TO 1100 MPC) IS ENVISIONED ALONG WITH A REDUCTION OF THE LOW FREQUENCY CUTOFF.

A Cryogenic Silicon Interferometer for Gravitational-wave Detection, R.Adhikari et al., arXiv:2001.11173

NEMO

NEUTRON STAR ESTREME MATTER OBSERVATORY A HIGH FREQUENCY DETECTOR

- RECENTLY THE NEMO HAS
 BEEN PROPOSED BY
 AUSTRALIAN GROUPS
- IT MAY USE ASPECTS OF
 VOYAGER TECHNOLOGY,
 BUT IT IS OPTIMIZED FOR THE
 KHZ BAND IN ORDER TO
 MEASURE THE NEUTRON
 STAR STATE EQUATION OF
 STATE.

NEMO <u>NEUTRON STAR ESTREME MATTER OBSERVATORY</u> A HIGH FREQUENCY DETECTOR

- RECENTLY THE NEMO HAS
 BEEN PROPOSED BY
 AUSTRALIAN GROUPS
- IT MAY USE ASPECTS OF
 VOYAGER TECHNOLOGY,
 BUT IT IS OPTIMIZED FOR THE
 KHZ BAND IN ORDER TO
 MEASURE THE NEUTRON
 STAR STATE EQUATION OF
 STATE.

Design Sensitivity

G3 DETECTORS SCIENCE

Factor 10 better (X1000 Volume) than 2G detectors LF sensitivity improvement (1 Hz target)

- Black-holes formation/ population studies
- Fundamental physics / nature of gravitation
- Cosmology / nature of dark energy
- Nuclear physics / ultra-dense matter
- Physics of Supernovae
- Multimessenger astrophysics
- Complementarity and synergies with LISA

https://arxiv.org/pdf/1912.02622 ET science case

Extreme matter Extreme universe Extreme gravity

Paola Puppo – INFN/Virgo - ICNFP 2021

EINSTEIN TELESCOPE

78 78 78 8 78 78 78 78

.....

-

ET DESIGN FEATURES

• Widen the bandwidth:

- Underground (seismic noise reduction)
- 10 km long arms (signal increase)
- Triangle configuration
- « Xylophone » (two combined detectors)
 hot (ET-HF) and cooled mirrors (ET-LF)
- Site qualification is ongoing (Italy, Hungary and Netherlands)
- ET is in ESFRI
 - Italy (Lead country)
 - Netherlands
 - Belgium
 - Spain
 - Poland

http://www.et-gw.eu/

THE ET TECHNOLOGIES AND CHALLENGES

Extrapolation of current or planned technologies for Virgo and LIGO

- Squeezing (non classical states of light)
- High-power lasers
- Large mirrors
- New mirror's coatings
- Thermal compensation techniques
- Suspension systems
- Technologies not yet tested in Virgo and LIGO
 some of them being tested in KAGRA
 - Cryogenics
 - New cryogenic materials
 - New laser wavelengths (1.5 or 2 microns)

- L-shaped, two detectors
- above-ground observatory
- 20 km and 40 km arm-length
- possible site location in the US (3 candidate sites, New Mexico, Utah, Nevada).

COSMIC EXPLORER

CE1: initial phase will employ scaled-up Advanced LIGO tecnology

- High mass fused silica test masses
- 1.5 MW of optical power
- frequency-dependent squeezing

CE2: A major upgrade (R&D technologies)

- new facility
- either using Voyager technology such as silicon test masses and amorphous silicon coatings operating at 123 K
- 1.5/2 µm laser light
- 3 MW of optical power in its arm cavities

COSMIC EXPLORER

30

10

Frequency / Hz

Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity Evan D. Hall et al, Phys. Rev. D 103, 122004 (2021)

TO SUMMARIZE

ADVANCED DETECTORS ARE BEING UPDATES (PLUS DETECTORS) FOR O4 AND O5

- A+
- ADV+
- KAGRA+

FILLING THE GAP BETWEEN O5 AND G3

- POST-O5 TECHNOLOGIES
 - INCREMENTAL UPGRADES: POWER, COATINGS, VARIOUS TECHNICAL NOISES, REACHING THE SENSITIVITY AT LOW FREQUENCY
 - IMPORTANT TO MOVE TOWARDS 3G INTERFEROMETERS BUT TRY TO KEEP THE DATA TAKING ON AS MUCH AS POSSIBLE
- PROJECTS FOR 3G TECHNOLOGIES AND TO PUSH THE CURRENT INTERFEROMETER AT THEIR LIMIT
 - POST-05 LIGO AND VIRGO
 - VOYAGER
 - NEMO

G3 DETECTORS

- ET, GREAT SCIENTIFIC POTENTIAL, ET IN THE ESFRI ROADMAP!
- THE FIRST VERSION OF THE COSMIC EXPLORER HORIZON STUDY HAS BEEN RELEASED: https://dcc.cosmicexplorer.org/public/0163/p2100003/004/ce-horizon-study.pdf