Constraints on Off-shell Higgs Boson Production and the Higgs Boson Total Width in ZZ Final states with the ATLAS Detector

Theodota LAGOURI (1) on behalf of the ATLAS Collaboration ICNFP 2021 23 August-2 September, Crete, Greece

Abstract

The off-shell production of SM Higgs boson, at the high-mass off-peak region beyond $2m_Z$, well above the measured resonance mass of m_H =125 GeV, has a substantial cross section at the LHC, due to the increased phase space as the Z bosons become onshell with the increasing energy scale. This presents a novel way of characterizing the properties of the Higgs boson in terms of the off-shell event yields, normalized to the SM prediction (referred to as signal strength μ), and the associated off-shell Higgs boson couplings. Assuming the ratio of the Higgs boson couplings to the SM predictions is independent of the momentum transfer of the Higgs boson production mechanism, a combination with the on-shell signal-strength measurement was used to set indirect limits on the total Higgs boson width with the 36 fb⁻¹ ATLAS Run-2 data collected in proton-proton collisions at the centre-of-mass energy of $\sqrt{s} = 13$ TeV.

Introduction & Motivation

- Main Purpose is to study the off-shell Higgs boson production in ZZ events above the $m_{\rm H}$ peak (~15% of the overall ggF crosssection)
 - Further characterize the Higgs boson properties:
 - measure the off-shell signal strength
 - probe new physics which can play a role in modifying the couplings structure
 - The SM Higgs total width, $\Gamma_{\rm H} \sim 4$ MeV, is not directly measurable at the LHC due to experimental limits
 - indirectly constrain the Higgs total width, assuming identical on-shell and off-shell couplings

Analysis Overview

- The study is based on two independent analyses (ZZ \to 4 ℓ , ZZ \to 2 ℓ 2 ν) that are combined to derive the final constraints
- The event selections are performed inclusively in the number of jets to reduce QCD-corrections dependence
- Use data collected by the ATLAS experiment in 2015 and 2016 at an integrated luminosity of 36.1 fb⁻¹
- On-shell region is defined between 118-129 GeV, while the off-shell is defined between 220-2000 GeV ($ZZ \rightarrow 4\ell$) and 250-2000 GeV ($ZZ \rightarrow 2\ell 2\nu$)

Analysis Strategy

Two-steps strategy:

- 1. Off-shell signal strength measurement
 - Interpetation of off-shell when fixing the ratio of the signal strength in ggF and VBF to the SM prediction
- 2. Higgs total width measurenent
 - Interpretation of the Higgs total width when assuming the same on-shell and off-shell couplings $\frac{\mu_{off-shell}}{\mu_{on-shell}} = \frac{\Gamma_H}{\Gamma_H^{SM}}$

Analysis Results

- For the ZZ \to 4ℓ channel, the shape fits to a Matrix Element -based kinematic discriminant, while the ZZ \to $2\ell 2\nu$ fits to the transverse mass ZZ distribution
- Main backgrounds: $qq \rightarrow ZZ$, $gg \rightarrow ZZ$
- Interference (negative) between signal and $gg \rightarrow ZZ$ continuum is considered
- The experimental systematics are almost negligible. The dominant systematic is the theory uncertainty on the high-order QCD corrections for ZZ background and signal

Conclusions

- Measurement of off-shell Higgs boson production in $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ ($\ell = e$ or μ)
- Using LHC ATLAS Run-2 36.1 fb⁻¹ data at \sqrt{s} =13 TeV
- Observed (expected) upper limit at 95% CL on off-shell Higgs signal strength of 3.8 (3.4)
 - Off-shell Higgs signal strength: event yield normalized to SM prediction
- Combination with the on-shell signal-strength measurements yields observed (expected) 95% CL upper limit on **Higgs boson total width** of 14.4 (15.2) MeV
 - Assuming ratio of Higgs boson couplings to SM predictions independent of momentum transfer of Higgs production mechanism

References:

1. Phys. Lett. B 786 (2018) 223 2. Eur. Phys. J. C (2015) 75:335