

Graph Networks for Track Reconstruction

Mini Workshop on Machine Learning, ICNFP 2021

Marcel Kunze, Heidelberg University

Pattern Recognition/Tracking

Pattern recognition/tracking is a very old, very hot topic in Artificial Intelligence, but very varied Note that these are real-time applications, with CPU constraints

HL-LHC All Silicon Tracker (Simulation)

Problem Definition

Connecting the dots but

- 3 dimensions
- 100'000 points into 10'000 tracks

Convolution NN ? Image based Approach

Recurrent Neural Networks (RNN) ? Point based Approach

Long Short Term Memory (LSTM)

Graph Neural Network

- A graph is processed node by node in a random order
- For a node in graph, the sum of the state vectors of neighboring nodes are computed and concatenated to its own label vector
- The algorithm guarantees a convergence of the state nodes to a stable and unique solution

sum of states

Application Domains

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Computer Science: Routing + tracking algorithms Chemistry: Molecular engineering

TrackML Throughput phase 3rd place

Author: Marcel Kunze

C++

CPP

Memory: 0.7 Gb

Graph Networks - Mini Workshop on Machine Learning, ICNFP 2021 | M.Kunze

х

Graph Network Training

Define spatial elements in $\phi * \theta$ (voxel)

- Organize the voxels in DAGs according to tracle evolution in radial direction
- Flexible to model even arbitrary paths (kinks, missing hits, outliers, random walk, ..)
- Training is done with MC tracks of typically 15-25 events

Multiscale resolution

- Multiple networks for doublet finding (θ)
- Multiple networks for triplet finding (ϕ, θ)

Path finding

- Sort event hits into the trained networks
- Seed and follow the path strategy
- Which is the right direction to go?
- Classify doublet and triplet patterns of points

Pattern Recognition with Machine Learning

Intuition

- Model free estimator
- Start with basic quantities
- Coordinates, simple derived values
- Only very basic detector specific information

Feature space

- Polar coordinates (R_t , ϕ , z)
- Directional cosines wrt. points
- Simple helix calculation (score)

Training

Supervised: presenting MC ground truth

In principle not needed, but speeds the things up !

Feature Space

Given two hits (clusters of silicon cells): predict if they belong to the same track

Estimate track direction from the cluster shape:

eigenvector of covariance

matrix of the siliconcells

Features for the training

- Polar coordinates of the hit doublet: $(r_1,\phi_1,z_1), (r_2,\phi_2,z_2)$
- Triplet finder works the same with a hit triplet
- Simple helix score
- Angle/length deviations of the vector *d* projection from the values predicted by the shape of cluster 1
- Angle/length deviations of the vector *d* projection from the values predicted by the shape of cluster 2

Feature Folding

The tracking problem is symmetric wrt. polar coordinates

- Fold the input parameter space into an octagon slice using "abs" function
- Considerable improvement of the separation strength of the parameters
- Need less statistics / yield better results

Rank	:	Variable	:	Separation	:	Rank	:	Variable	:	Separation
1	:	log(score)	:	5.039e-01		1	:	log(score)	:	5.978e-01
2	:	rz3	:	5.491e-04	:	2	:	rz3	:	6.329e-04
3	:	phi3	:	7.552e-05	:	3	:	abs(abs(phi3)-1.57079632679)) :	1.317e-04
4	:	z3	:	4.986e-05	:	4	:	abs(z3)	:	5.522e-05
5	:	rz2	:	1.519e-05	:	5	:	rz2	:	2.067e-05
6	:	rz1	:	9.568e-06	:	6	:	rz1	:	1.675e-05
7	:	phi2	:	4.101e-06	:	7	:	abs(abs(phi2)-1.57079632679)) :	4.335e-06
8	:	z1	:	1.967e-06	:	8	:	abs(z1)	:	3.592e-06
9	:	z2	:	1.965e-06	:	9	:	abs(abs(phi1)-1.57079632679)) :	3.038e-06
10	:	phi1	:	1.503e-06	:	10	:	abs(z2)	:	2.963e-06

Hit Doublet / Triplet Classification: MLP

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

"Shallow learning";)

Classify the doublets and triplets with neural networks

- Multi Layer Perceptron: MLP1 8-15-5-1 / MLP2 9-15-5-1 / MLP3 10-15-5-1
- Input: hit coordinates, directional cosines towards the clusters, helicity score wrt. origin
- Output: doublet/triplet quality, supervised training with Monte-Carlo ground truth
- Training: Typically 10 events, O(Mio) patterns, 500 epochs, one hour on standard PC
- "Receiver Operation Characteristics" (ROC) curves indicate good quality

Worse due to vertex shift !

Machine Learning Advantage

Model free estimator (Basic features)

Solution may be easily transferred to a different context

Graceful degradation in presence of changes

- Geometry
- Dead channels
- Calibration
- ...

The graphs may represent arbitrary tracking paths

- Inhomogeneous magnetic field
- Kinks
- ..

Takeaway Messages

Graph Networks

- Very natural data representation for a lot of scientific problems.
- Promising performance in pattern recognition tasks.

Work has been published: Amrouche, S. et al. *The Tracking Machine Learning challenge: Throughput phase* (2021). <u>2105.01160</u>. Dr. Marcel Kunze marcel.kunze@uni-heidelberg.de Im Neuenheimer Feld 293 / 106 D-69120 Heidelberg

