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Introduction
• The LHC is world’s largest and most powerful particle collider in discovery mode


• Main physics goals:

‣ Discover the Higgs boson to establish its role in EWSB 

‣ Search for beyond SM phenomena at TeV energy scale
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One in a million millions!
• During Run-2:


‣ 2556 bunches, ~2.5x1011 protons per bunch

‣ Instantaneous luminosity reached 2.5x1034 cm-2 s-1 

‣ A total of ~1016 proton-proton collision events out of which ~104 produce the Higgs boson



Rates of Physics Processes
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All results at: http://cern.ch/go/pNj7
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CMS 95%CL limits at 7, 8 and 13 TeV

)-1 5.0 fb≤7 TeV CMS measurement (L 
)-1 19.6 fb≤8 TeV CMS measurement (L 
)-1 137 fb≤13 TeV CMS measurement (L 

Theory prediction

• New physics processes like Supersymmetry, dark matter etc predicted to have even lower cross 
sections


• Benefit-cost analysis between keeping large amount of data and storage capacity

Higgs
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The CMS Trigger System
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• CMS is one of the two general purpose 
detectors at the LHC, built around a 
superconducting solenoid


• Dedicated sub-detectors to identify 
different particles, combined information 
to reconstruct collision event


• Decision to store interesting events taken 
by the online Trigger system at real time

Trigger system provides first decision to accept/reject events based on the topology

uninteresting

interesting

trigger 
acceptance

• Selection performed in stages:

‣ Level-1 (L1): hardware driven, based on fast detector 

readout, custom electronics, limited granularity 

‣ High Level Trigger (HLT): software based, 

commercial PCs, improved object reconstruction 
comparable to offline


• Once rejected by trigger, event is lost forever
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Trigger Design
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• Challenges of hadron collider machine: high rejection of 
physics events


• Reconstruct physics objects and event variables online with 
available granularity


• At L1 each sub-detector provides a sub-trigger, logical OR of 
which is the global trigger (exploit trigger redundancy)


• At HLT sophisticated algorithms (paths) look for specific event 
signatures


• As a complement, also select minimum bias events to study 
unknown event signatures

40 MHz input

100 kHz

1 kHz output
→1 out of 106 events selected

• Each reconstructed event takes ~1 MB of storage space


• Data acquisition constraint of ~1000 events per second 


• Event prescaling: one event picked at random from several similar events to save storage

→still producing up to ~1 PB data per day
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Level-1 Trigger Implementation
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ECAL TPs

(energy)

HCAL TPs

(energy)

HF TPs

(energy)

Calo Layer-1

(pre-processor)

Calo Layer-2

(main processor)

De-multiplexing

DT TPs

(segments)

RPC TPs

(hits)

CSC TPs

(segments)

Concentrator

(pre-processor)

Track finder

(main processor)

Global muon trigger

(decision)

Global trigger

(decision)

Calorimeter trigger Muon trigger

Clusters

8 leading 
muons

Calibrated 
trigger towers

12 leading e/γ, 
taus, jets, sums

Level-1 Accept
Decision takes typically ~1 µs, coupled with propagation delay the latency is ~4 µs

Muons with 
assigned pT
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Level-1 Trigger Algorithms
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• Taus:

‣ Similar to electrons/photons, shape discrimination optimised separately


• Jets:

‣ Sliding window algorithm looking for trigger tower seeds over a given energy threshold

‣ Sum of 9x9 trigger towers to match jet radius of 0.4 at offline

‣ Pileup subtraction and calibration


• Energy sums:

‣ Sum of jet energies with a restriction in energy and pseudorapidity


• Muons:

‣ Extrapolation based track finding in barrel, pattern based in overlap and endcap regions

‣ pT assignment based on Δϕ in barrel, patterns in overlap, BDT regression in endcap

• Electrons/photons:

‣ Cluster shape and electromagnetic energy fractions 

to discriminate against jets

‣ Use of energy weighted position measurement, 

cluster energy calibration and isolation measurement


CERN-EP-2020-065
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Level-1 Trigger Performance
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• Phase-1 upgrade of the L1 system in 2016 exploited full calorimeter granularity to give better 
energy and position resolutions while remaining within rate constraints


• Run-2 performance of L1 triggers also benefitted from pileup subtraction
2010 to 2015

2016 onwards
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All reconstruction 
performances greatly 
independent of pileup

CMS DP-2019/020
CMS DP-2018/044
CMS DP-2018/040

CMS-TDR-012
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Level-1 Trigger HL-LHC Upgrade
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• The impending Phase-2 upgrade for the high luminosity phase or HL-LHC will see upgraded 
detectors, adding to efficiency gains at L1
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‣ Inclusion of tracking, PF algorithm

‣ Increased granularity in calorimeter 

trigger, increased muon system 
pseudorapidity coverage


‣ Use of state-of-the-art processing boards 
running more complex algorithms at 12.5 
µs latency, optical links to send data at 
28 GB/s, 750 kHz output bandwidth
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High Level Trigger
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• Software algorithms running asynchronously on commercial computing hardware

‣ Same code and similar algorithms used for offline reconstruction but very optimized

‣ 100 times faster than offline reconstruction

‣ 30,000 CPU cores at the end of Run-2


• Make use of full detector data to select events for offline storage and analysis


• Modular approach to speed up online reconstruction

‣ Alternate event builder and event filter steps

‣ Starts with the fastest step, regional reconstruction around L1 seeds

‣ Run time-consuming tracking and particle-flow only for interesting events after filtering


• Hundreds of HLT paths targeting broad event topologies

Decision takes typically ~300 ms

• Aim to select one out of every 100 events


• Output bandwidth ~2 GB/s


• In Run-2 HLT included improvements resulting from 
Phase-1 upgrades of Pixel and HCAL sub-systems 

CMS DP-2018/057

CMS-TDR-010
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High Level Trigger Performance (I)
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• In addition to HLT objects, many physics analysis oriented trigger paths defined at HLT, 
performance depends on specific requirements
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High Level Trigger Performance (II)
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• In addition to HLT objects, many physics analysis oriented trigger paths defined at HLT, 
performance depends on specific requirements
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High Level Trigger HL-LHC Upgrade
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• Manyfold increase in detector readouts during HL-LHC, CPUs unable to cope with demand in 
performance


• Adoption of heterogeneous architecture: using GPUs as a strategy for providing the necessary 
computing power at an affordable price


• Main features in algorithm improvement: 3D shower reconstruction, pixel tracks and vertex 
reconstruction, more pileup suppression…


• Output bandwidth increase to ~61 GB/s, with rate at 7.5 kHz
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Towards Run-3 (I)
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• Some Phase-2 improvements already ready to be implemented during Run-3


• Foresee higher pileup profile compared to Run-2, new features needed to compensate the 
physics program


• L1 Trigger:

‣ Inclusion of GEM in the muon track finder

‣ HCAL depth and timing information

‣ Kalman filter for muon tracks


• HLT:

‣ Exercise heterogeneous GPU architecture

CMS DP-2021/013

menu w/o GPU menu with GPU
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Towards Run-3 (II)
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• Computing resource constraints: present average HLT rate limit 1 kHz at peak luminosity

‣ Limited bandwidth: data recording and transfer limited to ~5 GB/s on average

‣ Prompt reconstruction: all recorded data must be fully reconstructed offline within ~48h

‣ The total amount of storage space is limited (tape and disk)


• Workaround to go beyond 1 kHz:

‣ Reduce event size with Scouting: reduce event size by saving only online/trigger objects that 

will be used directly in data analyses; already established method in CMS since Run-1

‣ Reduce computing resources with Parking: “park” data on tape, skipping prompt 

reconstruction and reconstruct the data later (during technical stops); during Run-2 large 
fraction of scouting data were parked


• For Run-3, expanding the reach to high rates and more exotic phase spaces 
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Summary
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• Trigger system is a behemoth dealing with extreme computing demands to meet the physics 
goals of the LHC


• Performance gains over the past years made possible by integrating new technologies and 
advanced algorithms

‣ Increased L1 granularity

‣ Improved trigger algorithms targeting rare final states


• Good performance in Run-2

‣ Sharper efficiency turn-ons, rates under control

‣ Little pileup dependence


• Major improvements planned for HL-LHC to extend reach to new physics processes, some 
already to be tested during Run-3

‣ Addition of tracking and correlator layer in L1 coupled with upgraded hardware, GPUs at HLT

That’s NOT all folks!
Stay tuned for exciting new physics
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