Trigger (CMS)

Pallabi Das
Princeton University, USA
on behalf of the CMS collaboration

ICNFP 2021
Kolymbari, Greece
30th August, 2021
Introduction

• The LHC is world’s largest and most powerful particle collider in discovery mode

• Main physics goals:
 ‣ Discover the Higgs boson to establish its role in EWSB
 ‣ Search for beyond SM phenomena at TeV energy scale

During Run-2:
 ‣ 2556 bunches, \(\sim 2.5 \times 10^{11} \) protons per bunch
 ‣ Instantaneous luminosity reached \(2.5 \times 10^{34} \) cm\(^{-2}\) s\(^{-1}\)
 ‣ A total of \(\sim 10^{16} \) proton-proton collision events out of which \(\sim 10^{4} \) produce the Higgs boson
Rates of Physics Processes

June 2021

CMS Preliminary

- New physics processes like Supersymmetry, dark matter etc predicted to have even lower cross sections
- Benefit-cost analysis between keeping large amount of data and storage capacity

All results at: http://cern.ch/go/pNj7
The CMS Trigger System

- CMS is one of the two general purpose detectors at the LHC, built around a superconducting solenoid.
- Dedicated sub-detectors to identify different particles, combined information to reconstruct collision event.
- Decision to store interesting events taken by the online Trigger system at real time.

Trigger system provides first decision to accept/reject events based on the topology.

- Selection performed in stages:
 - **Level-1 (L1):** hardware driven, based on fast detector readout, custom electronics, limited granularity.
 - **High Level Trigger (HLT):** software based, commercial PCs, improved object reconstruction comparable to offline.
- Once rejected by trigger, event is lost forever.
Trigger Design

- Challenges of hadron collider machine: high rejection of physics events
- Reconstruct physics objects and event variables online with available granularity
- At L1 each sub-detector provides a sub-trigger, logical OR of which is the global trigger (exploit trigger redundancy)
- At HLT sophisticated algorithms (*paths*) look for specific event signatures
- As a complement, also select minimum bias events to study unknown event signatures

 \[\rightarrow 1 \text{ out of } 10^6 \text{ events selected} \]

- Each reconstructed event takes \(~1\) MB of storage space
- Data acquisition constraint of \(~1000\) events per second
- Event prescaling: one event picked at random from several similar events to save storage

 \[\rightarrow \text{still producing up to } ~1 \text{ PB data per day} \]
Level-1 Trigger Implementation

Calorimeter trigger

- ECAL TPs (energy)
- HCAL TPs (energy)
- HF TPs (energy)

Calo Layer-1 (pre-processor)

Calo Layer-2 (main processor)

De-multiplexing

Global trigger (decision)

Muon trigger

- DT TPs (segments)
- RPC TPs (hits)
- CSC TPs (segments)

Concentrator (pre-processor)

Track finder (main processor)

Global muon trigger (decision)

Level-1 Accept

Decision takes typically ~1 µs, coupled with propagation delay the latency is ~4 µs
Level-1 Trigger Algorithms

- **Electrons/photons:**
 - Cluster shape and electromagnetic energy fractions to discriminate against jets
 - Use of energy weighted position measurement, cluster energy calibration and isolation measurement

- **Taus:**
 - Similar to electrons/photons, shape discrimination optimised separately

- **Jets:**
 - Sliding window algorithm looking for trigger tower seeds over a given energy threshold
 - Sum of 9x9 trigger towers to match jet radius of 0.4 at offline
 - Pileup subtraction and calibration

- **Energy sums:**
 - Sum of jet energies with a restriction in energy and pseudorapidity

- **Muons:**
 - Extrapolation based track finding in barrel, pattern based in overlap and endcap regions
 - \(p_T \) assignment based on \(\Delta \phi \) in barrel, patterns in overlap, BDT regression in endcap

CERN-EP-2020-065
Level-1 Trigger Performance

- Phase-1 upgrade of the L1 system in 2016 exploited full calorimeter granularity to give better energy and position resolutions while remaining within rate constraints.

- Run-2 performance of L1 triggers also benefitted from pileup subtraction.

> CMS Preliminary 2016 Data 3.1 fb⁻¹ (13 TeV)
> CMS Preliminary 2018 Data 11.0 fb⁻¹ 13 TeV

All reconstruction performances greatly independent of pileup.

2010 to 2015

2016 onwards

CMS DP-2019/020
CMS DP-2018/044
CMS DP-2018/040

Electron/photon

Muon

Jet

Tau
The impending Phase-2 upgrade for the high luminosity phase or HL-LHC will see upgraded detectors, adding to efficiency gains at L1.

- Inclusion of tracking, PF algorithm
- Increased granularity in calorimeter trigger, increased muon system pseudorapidity coverage
- Use of state-of-the-art processing boards running more complex algorithms at 12.5 μs latency, optical links to send data at 28 GB/s, 750 kHz output bandwidth

Serenity boards running PF-jet algorithm, 98% events have perfect agreement with software.

NN based algorithms for tau reconstruction

New displaced muon triggers using Kalman filter

CMS Phase-2 Simulation 14 TeV, 200 PU

CMS-TDR-021
High Level Trigger

- Software algorithms running asynchronously on commercial computing hardware
 - Same code and similar algorithms used for offline reconstruction but very optimized
 - 100 times faster than offline reconstruction
 - 30,000 CPU cores at the end of Run-2
- Make use of full detector data to select events for offline storage and analysis
- Modular approach to speed up online reconstruction
 - Alternate event builder and event filter steps
 - Starts with the fastest step, regional reconstruction around L1 seeds
 - Run time-consuming tracking and particle-flow only for interesting events after filtering
- Hundreds of HLT paths targeting broad event topologies
- Aim to select one out of every 100 events
- Output bandwidth ~2 GB/s
- In Run-2 HLT included improvements resulting from Phase-1 upgrades of Pixel and HCAL sub-systems

Decision takes typically ~300 ms
In addition to HLT objects, many physics analysis oriented trigger paths defined at HLT, performance depends on specific requirements.
In addition to HLT objects, many physics analysis oriented trigger paths defined at HLT, performance depends on specific requirements.
High Level Trigger HL-LHC Upgrade

- Manyfold increase in detector readouts during HL-LHC, CPUs unable to cope with demand in performance
- Adoption of heterogeneous architecture: using GPUs as a strategy for providing the necessary computing power at an affordable price
- Main features in algorithm improvement: 3D shower reconstruction, pixel tracks and vertex reconstruction, more pileup suppression...
- Output bandwidth increase to ~61 GB/s, with rate at 7.5 kHz
Towards Run-3 (I)

- Some Phase-2 improvements already ready to be implemented during Run-3
- Foresee higher pileup profile compared to Run-2, new features needed to compensate the physics program

 L1 Trigger:
 - Inclusion of GEM in the muon track finder
 - HCAL depth and timing information
 - Kalman filter for muon tracks

 HLT:
 - Exercise heterogeneous GPU architecture
Towards Run-3 (II)

- Computing resource constraints: present average HLT rate limit 1 kHz at peak luminosity
 - Limited bandwidth: data recording and transfer limited to ~5 GB/s on average
 - Prompt reconstruction: all recorded data must be fully reconstructed offline within ~48h
 - The total amount of storage space is limited (tape and disk)

- Workaround to go beyond 1 kHz:
 - **Reduce event size with Scouting**: reduce event size by saving only online/trigger objects that will be used directly in data analyses; already established method in CMS since Run-1
 - **Reduce computing resources with Parking**: “park” data on tape, skipping prompt reconstruction and reconstruct the data later (during technical stops); during Run-2 large fraction of scouting data were parked

- For Run-3, expanding the reach to high rates and more exotic phase spaces

![Di-muon mass spectrum using Run-2 scouting data](CMS DP-2018/055)
Summary

- Trigger system is a behemoth dealing with extreme computing demands to meet the physics goals of the LHC

- Performance gains over the past years made possible by integrating new technologies and advanced algorithms
 - Increased L1 granularity
 - Improved trigger algorithms targeting rare final states

- Good performance in Run-2
 - Sharper efficiency turn-ons, rates under control
 - Little pileup dependence

- Major improvements planned for HL-LHC to extend reach to new physics processes, some already to be tested during Run-3
 - Addition of tracking and correlator layer in L1 coupled with upgraded hardware, GPUs at HLT

That's NOT all folks!

Stay tuned for exciting new physics