SURROUNDING MATTER THEORY: FIRST MATHEMATICAL DEVELOPMENTS

SURROUNDING MATTER THEORY: FIRST MATHEMATICAL DEVELOPMENTS

Presentation

Table of content

- I. Presentation
- II.Prerequisite
- III.A new representation of relativity
- IV. Synchronisation of clocks and foliation
- V.Non null vectors versus null vectors duality
- VI.GR version using null vectors
- VII.Surrounding equation in the context of Particle Physics
- VIII.Conclusion
- IX.Discussion

Prerequisite

- I. The research
- II.Surrounding

Prerequisite: the research

Prerequisite: the research

Prerequisite: the research

Surrounding or « Surrounding Matter Theory » (SMT)

Reference: F. Lassiaille, Surrounding Matter Theory, EPJ Web Conf., 182 03006, 2018

Prerequisite: Surrounding

GR equation is modified using the **surrounding matter** at the location where the force is **exerted**:

Surrounding equation:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} C^l_{\mu} C^m_{\nu} T_{bm}$$

What is this $C^{l}_{\mu}C^{m}_{\nu}$ « surrounding » factor?

- Matter density at the location where the force is exerted.
- It depends of the scale.
- ♠ Astrophysic scale → calculated in the 15 kpc ray sphere.

- Reference: F. Lassiaille, Journal of Modern Physics, Vol. 4 No. 7, pp. 1027-1035, 2013
- An euclidean representation of space-time inverting the metric coefficients:

Minkowskian metric:
$$ds^2 = \left(1 - \frac{M}{x}\right)c^2 dt_b^2 - \left(1 - \frac{M}{x}\right)^{-1} dx_b^2$$

This euclidean

representation:

$$ds'^{2} = \left(1 - \frac{M}{x}\right)^{-1} c^{2} dt_{b}^{2} + \left(1 - \frac{M}{x}\right) dx_{b}^{2}$$

• The space-time deformations are viewed:

in a « human sensitive » manner.

The geodesics are not the correct one.

They are correct only for the weak deformations.

But they are viewed immediatly.

Some GR features are more « visual ».

• A Lorentz Transform is a space-time deformation :

• One given global space-time deformation can be the result of:

- GR Lagrangian conservation in vacuum.
- Matter in motion.

Gravitational waves?

Synchronisation of clocks and foliation : the question					

Synchronisation of clocks and foliation

- Reference: E. Minguzzi J. Phys.: Conf. Ser. 306 012059, 2011:
- In Special Relativity (SR) the historical synchronisation of clocks supposes that light travel times are the same from left to right and right to left.
- But this is only true in one given frame of reference.
- What is this frame?
 - SR does not answer to this question.
 - Does General Relativity (GR) answer the question?

Synchronisation of clocks and foliation

Supposing a symetrical synchronisation (mathematical convention):

- The meaning of a frame exists.
- Relativity can be constructed.
- It follows that there exists a privileged frame, the frame in which time elapses the most.
- From this the different synchronisation conventions are deduced from each other
 Using the Lorentz Transform.

Synchronisation of clocks and foliation

Supposing a symetrical synchronisation (mathematical convention):

- The meaning of a frame exists.
- Relativity can be constructed.
- It follows that there exist a privileged frame, the frame in which time elapses the most.
- From this the different synchronisation conventions are deduced from each other
 Using the Lorentz Transform.

It remains the question:

Which convention must be used for the frame in which time elapses the most?

- No formal answer.
- But **supposing** a **non** symetrical convention in this frame:
 - The corresponding frame with symmetrical convention has no closed loop trajectory. « Nobody will know ».
- The symetry of the configuration suggests to choose a symetrical convention.

Non null vectors versus null vectors duality

• Minkowskian metric in a non null vectors base \mathbf{B} (ct, \mathbf{x}):

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad ds^2 = c^2 dt^2 - dx^2$$

• In the D $(u,v) = \frac{(ct+x)}{\sqrt{2}}$, $\frac{(ct-x)}{\sqrt{2}}$ null vectors base:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad ds^2 = 2 dX dY$$

 $d\vec{x} = cdt \ \vec{t} + dx \ \vec{x} \quad \text{in the B base,} \quad d\vec{x} = dX \ \vec{u} + dY \ \vec{v} \quad \text{in the D base.}$

$$dX = (dt+dx)/\sqrt{2}, dY = (dt-dx)/\sqrt{2}$$

- F: $E^{\Lambda} \rightarrow CXC$ (C is the set of null vectors) $dx \mid -> (dX \vec{u}, dY \vec{v})$
- To any **dx** vector in **E**, the 4D space-time, which is not parallel to **ct**, **F** goes to an unordered couple of null vectors (dX v, dY v). This such defined unordered couple is unique.

Non null vectors versus null vectors duality : Isotropic symetric form and simplectic form

Let's give f, a 2D symetric form having one null dimension.
 There exists an orthonormal and orthogonal base B=(i,j) in which the f matrix is diagonal:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad \underbrace{f(U, U) = x^2 - y^2} \qquad \underbrace{f(U, V) = xx' - yy'}$$

• In the **D**= $(\mathbf{u},\mathbf{v}) = (\frac{(\mathbf{i}+\mathbf{j})/\sqrt{2}}{\sqrt{2}}, \frac{(\mathbf{i}-\mathbf{j})/\sqrt{2}}{\sqrt{2}})$ null vectors base, the **f** matrix becomes

$$\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}$$

$$f(U, U) = 2XY$$

$$f(U, V) = XY' + X'Y$$

• From it one can construct the **g** simplectic form having the following matrix in **D**:

$$g(U,U) = 0$$

$$g(U,V) = XY' - X'Y$$

Non null vectors versus null vectors duality

- Interesting features of null vectors:
 - Energy equation calculation is a surfacic version of pythagore equation:

• Energy equation
$$Em^2 = Et^2-Emvt^2$$

• In **B** base
$$ds^2 = c^2 dt^2 - dx^2$$

• In **D** base
$$2XY = \left(\frac{X+Y}{\sqrt{2}}\right)^2 - \left(\frac{X-Y}{\sqrt{2}}\right)^2$$

Minkowskian

metric is «detailed»

Boost Lorentz transform equations are simplified:

$$LT = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \begin{bmatrix} 1 & -\frac{v}{c} \\ -\frac{v}{c} & 1 \end{bmatrix}$$

$$LT = \begin{bmatrix} D & 0 \\ 0 & \frac{1}{D} \end{bmatrix}$$

$$D = \frac{\sqrt{1 - \frac{v}{c}}}{\sqrt{1 + \frac{v}{c}}}$$

Non null vectors versus null vectors duality

- Interesting features of these null vectors (following):
 - Morphism between four momentums and boosts.
 - Base of barycentric formulation of boosts. Algebraic structure.
 - Coherence between energy and waves :
 - This energy travels at light speed
 - Waves also
 - They are naturally equivalent
- It gives the idea of another GR formulation

GR version using null vectors

Resulting equation

$$D^{\mu}(x) = \sum_{n=0}^{\infty} \delta(\|x - y_n\|_3 - x^0 + y_n^0) f(\|x - y_n\|_3) C^{\mu}(y_n)$$

where:
$$D^{\mu}(x) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{E}{c} \left(1, \frac{v_x}{c}, \frac{v_y}{c}, \frac{v_z}{c} \right)$$
$$C^{\mu}(y_n) = \frac{E(y_n)}{c} \left(1, \frac{c_x}{c}, \frac{c_y}{c}, \frac{c_z}{c} \right)$$

Now, from
$$D^{\mu}(x) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{E}{c} \left(1, \frac{v_x}{c}, \frac{v_y}{c}, \frac{v_z}{c} \right)$$

Then the boost is deduced
$$B^\mu_\nu(x) = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \begin{array}{cccc} 1 & -v_x/c & -v_y/c & -v_z/c \\ -v_x/c & 1 & 0 & 0 \\ -v_y/c & 0 & 1 & 0 \\ -v_z/c & 0 & 0 & 1 \end{array}$$
 and the evolution of the metric
$$g_{\alpha\beta}(x) = B^\rho_\alpha B^\kappa_\beta S^\mu_\rho S^\nu_\kappa g_{\mu\nu}(x')$$

The metric evolution is driven by the evolution of the frame in which time elapses the most:

$$g_{\alpha\beta}(x) = B^{\rho}_{\alpha} B^{\kappa}_{\beta} S^{\mu}_{\rho} S^{\nu}_{\kappa} g_{\mu\nu}(x')$$

The whole picture

Four momentum of an IP (Indivisible Particle):

 $D_0^{\mu}(y) = \frac{E_0}{c}(1, -1, 0, 0)$

It propagates a potential spacetime deformation

 $D^{\mu}(y) = \frac{E}{c}(1, -1, 0, 0)$

Space-time structure is given at each encounter of waves:

what is going on at x location

Invariance break

Privileged frame

$$g_{\alpha\beta}(x) = B^{\rho}_{\alpha} B^{\kappa}_{\beta} S^{\mu}_{\rho} S^{\nu}_{\kappa} g_{\mu\nu}(x')$$

When it comes to physics:

- The specification of the waves is tough
- A discrete model is mandatory
- Passing from the discrete model to the continuous macroscopic metric is
 - Complicated
 - Not completed yet
 - Similarities with the path integral

Nevertheless from a mathematical perspective,

- The surrounding behaviour of the model will remain the fondamental behaviour whatever the physics will tell.
- Because :

$$\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\left(1,\frac{v_{x}}{c},\frac{v_{y}}{c},\frac{v_{z}}{c}\right) = \frac{D^{\mu}(x)}{E/c} = \frac{\sum_{n=0}^{\infty} \delta\left(||x-y_{n}||_{3}-x^{0}+y_{n}^{0}\right)f\left(||x-y_{n}||_{3}\right)C^{\mu}(y_{n})}{\sum_{n=0}^{\infty} \delta\left(||x-y_{n}||_{3}-x^{0}+y_{n}^{0}\right)f\left(||x-y_{n}||_{3}\right)E(y_{n})/c}$$

• Reminder of today's picture:

Experimental data				
Gravitation: Cosmology, Schwarzschild metric, Black holes, etc	Particle Physics			
GR	GR	Quantum Mechanics	QFT	
SR	SR	Path integral	Dirac and Lie Algebras	

• The today's picture contain a hidden actor:

• 2 modifications:

Consequences

- Consequences in the domain of particle physics
 - Surrounding effect prevails.
 - It does <u>not</u> manifest itself in a 2 body (baryons) interaction :
 - Electromagnetism
 - Weak interaction
 - It manifests itself <u>only</u> in a 3 body interaction :
 - Strong force
 - The result is confinement and mass gap :
 - an increase of the strong force,
 - only this force,
 - with distance.

• Attractive force from P1 to P2 is weak because P3 is in the surrounding of P1

• Attractive force from P1 to P2 is stronger because P3 is no longer in the surrounding of P1

Conclusion

The particular euclidean representation of relativity

Helps understanding GR mechanisms

Non null vectors versus null vectors duality

- exists under the choice of a particular base,
- this base is the frame of GR in which time elapses the most.
- It allows to try another mathematical construction of GR

This new construction of GR

- For gravitation, yields the Surrounding gravitational model (SMT).
- In the context of Particle Physics, it suggests a solution to the Yang-Mills Millenium Problem, confinement and mass gap.

Discussion