The cosmological constant in supergravity and string theory

I. Antoniadis

LPTHE, Sorbonne Université, CNRS, Paris

23 August-2 September, OAC, Kolymbari, Greece

Universe evolution: based on positive cosmological constant

- Dark Energy
 simplest case: infinitesimal (tuneable) +ve cosmological constant
- Inflation (approximate de Sitter)
 describe possible accelerated expanding phase of our universe

The cosmological constant in Supergravity

Highly constrained: $\Lambda \geq -3m_{3/2}^2$

equality

AdS (Anti de Sitter) supergravity

 $m_{3/2} = W_0$: constant superpotential

- inequality: dynamically by minimising the scalar potential
 - \Rightarrow uplifting Λ and breaking supersymmetry
- ullet Λ is not an independent parameter for arbitrary breaking scale $m_{3/2}$

What about breaking SUSY with a <D> triggered by a constant FI-term?

standard supergravity: possible only for a gauged $U(1)_R$ symmetry:

absence of matter $\Rightarrow W_0 = 0 \rightarrow dS$ vacuum Friedman '77

• exception: non-linear supersymmetry [8]

Non-linear SUSY in supergravity

I.A.-Dudas-Ferrara-Sagnotti '14

$$K = X\bar{X}$$
 ; $W = fX + W_0$

 $X \equiv X_{NL}$ nilpotent goldstino superfield [6]

$$X_{NL}^2 = 0 \Rightarrow X_{NL}(y) = \frac{\chi^2}{2F} + \sqrt{2}\theta\chi + \theta^2 F$$

$$\Rightarrow$$
 $V = |f|^2 - 3|W_0|^2$; $m_{3/2}^2 = |W_0|^2$

- V can have any sign contrary to global NL SUSY
- NL SUSY in flat space $\Rightarrow f = \sqrt{3} \, m_{3/2} M_p$
- R-symmetry is broken by W_0

A new FI term Cribiori-Farakos-Tournoy-Van Proeyen '18

gauge invariant at the Lagrangian level but non-local

becomes local and very simple in the unitary gauge

Global supersymmetry:

gauge field-srength superfield

persymmetry: gauge field-srength supersymmetry:
$$\mathcal{L}_{\mathrm{FI}}^{new} = \xi_1 \int d^4 \theta \frac{\mathcal{W}^2 \overline{\mathcal{W}}^2}{\mathcal{D}^2 \mathcal{W}^2 \bar{\mathcal{D}}^2 \overline{\mathcal{W}}^2} \mathcal{D}^{\mathcal{W}} = -\xi_1 \mathrm{D} + \mathrm{fermions}$$

It makes sense only when < D $> \neq$ 0 \Rightarrow SUSY broken by a D-term

Supergravity generalisation: straightforward

unitary gauge: goldstino = U(1) gaugino = $0 \Rightarrow$ standard sugra $-\xi_1 D$

New FI term in supergravity

Pure sugra + one vector multiplet \Rightarrow [4]

$$\mathcal{L} = R + \bar{\psi}_{\mu}\sigma^{\mu\nu\rho}D_{\rho}\psi_{\nu} + m_{3/2}\bar{\psi}_{\mu}\sigma^{\mu\nu}\psi_{\nu} - \frac{1}{4}F_{\mu\nu}^{2} - \left(-3m_{3/2}^{2} + \frac{1}{2}\xi_{1}^{2}\right)$$

- $\xi_1 = 0 \Rightarrow AdS$ supergravity
- $\xi_1 \neq 0$ uplifts the vacuum energy and breaks SUSY

e.g.
$$\xi_1 = \sqrt{6m_{3/2}} \Rightarrow$$
 massive gravitino in flat space

New FI-term introduces a cosmological constant in the absence of matter

Presence of matter \Rightarrow non trivial scalar potential $ext{net}$ net result: $\xi_1 \to \xi_1 e^{K/3}$ but breaks Kähler invariance

However new FI-term in the presence of matter is not unique

Question: can one modify it to respect Kähler invariance?

Answer: yes, constant Fl-term + fermions as in the absence of matter

⇒ constant uplift of the potential

I.A.-Chatrabhuti-Isono-Knoops '18

Jang-Porrati '21

In general $\xi_1 o \xi_1 \, f(m_{3/2}[\phi, \bar{\phi}])$

I.A.-Rondeau '99

It can also be written in N = 2 supergravity

I.A.-Derendinger-Farakos-Tartaglino Mazzucchelli '19

Swampland de Sitter conjecture

String theory: vacuum energy and inflation models related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$\frac{|\nabla V|}{V} \geq c$$
 or $\min(\nabla_i \nabla_j V) \leq -c'$ in Planck units

with c, c' positive order 1 constants

Ooguri-Palti-Shiu-Vafa '18

Dark energy: forbid dS minima but allow maxima

Inflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

→ here: explicit counter example

Moduli stabilisation in type IIB

Compactification on a Calabi-Yau manifold $\Rightarrow N = 2$ SUSY in 4 dims

Moduli: Complex structure in vector multiplets

Kähler class & dilaton in hypermultiplets

 \Rightarrow decoupled kinetic terms

turn on appropriate 3-form fluxes (primitive self-dual) $\Rightarrow N=1$ SUSY field-strengths of 2-index antisymmetric gauge potentials

+ orientifolds and D3/D7-branes

vectors and RR companions of geometric moduli are projected away \Rightarrow

all moduli in ${\it N}=1$ chiral multiplets + superpotential for the

complex structure & dilaton \rightarrow fixed in a SUSY way Frey-Polchinski '02

Kähler moduli: no scale structure, vanishing potential (classical level) [11]

String moduli

String compactifications from 10/11 to 4 dims \rightarrow scalar moduli arbitrary VEVs: parametrize the compactification manifold

size of cycles, shapes, ..., string coupling

- N=1 SUSY \Rightarrow complexification: scalar + i pseudoscalar $\equiv \phi_i$
- Low energy couplings: functions of moduli

Stabilisation of Kähler moduli

Non perturbative superpotential from gaugino condensation on D-branes

⇒ stabilisation in an AdS vacuum

Derendinger-Ibanez-Nilles '85

Uplifting using anti-D3 branes

Kachru-Kallosh-Linde-Trivedi '03

or D-terms and perturbative string corrections to the Kähler potential

Large Volume Scenario (LVS)

Conlon-Quevedo et al '05

Ongoing debate on the validity of these ingredients in full string theory

While perturbative stabilisation has the old Dine-Seiberg problem

put together 2 orders of perturbation theory violating the expansion

possible exception known from filed theory:

logarithmic corrections → Coleman-Weinberg mechanism

The Dine-Seiberg problem

Runaway potential towards vanishing string coupling or large volume

 \Rightarrow if there is perturbative minimum, it is likely to be at strong coupling or string size volume

Analogy with Coleman-Weinberg symmetry breaking

Effective potenial in massless $\lambda \Phi^4$

$$V = \left\{ \sum_{N>1} c_N \lambda^N(\Phi) \right\} \Phi^4 \implies \text{minimum at } \lambda = 0 \text{ or } \mathcal{O}(1)$$

C-W perturbative symmetry breaking needs 2 couplings + logs: [18]

$$V_{\mathrm{C-W}} = \left(\lambda + c_1 \mathrm{e}^4 \ln \frac{|\Phi|^2}{\mu^2}\right) |\Phi|^4 \ \Rightarrow \ |\Phi|_{\min}^2 \propto \mu^2 \mathrm{e}^{-\frac{\lambda}{c_1 \mathrm{e}^4}}$$

both λ and e are weak < 1

realising this proposal in string theory:

- replace gaugino condensation by log corrections in the F-part potential
- use D-term uplifting as in LVS

Log corrections in string theory:

localised couplings + closed string propagation in $d \le 2$

Effective propagation of massless bulk states in $d \leq 2 \Rightarrow \mathsf{IR}$ divergences [18]

d=1: linear, d=2: logarithmic

⇒ corrections to (brane) localised couplings

depending on the size of the bulk due to local closed string tadpoles

I.A.-Bachas '98

e.g. threshold corrections to 4d gauge coupling

linear dilaton dependence on the 11th dim of M-theory ${}_{[16]}$

Type II strings: correction to the Kähler potential \leftrightarrow Planck mass

I.A.-Ferrara-Minasian-Narain '97

decompactification limit in the presence of branes

$$(c)$$

$$\mathcal{A} \sim rac{1}{V_{\perp}} \sum_{|p_{\perp}| < M_s} rac{1}{p_{\perp}^2} extstyle{ extstyle F(ec{p}_{\perp})}$$

$$V_{\perp} = R^d \quad \vec{p}_{\perp} = \vec{n}/R$$

$$R >> l_s \Rightarrow$$

$$\mathcal{A} \sim egin{cases} \mathcal{O}(R) & \textit{for d} = 1 \\ \mathcal{O}(\log R) & \textit{for d} = 2 \\ \textit{finite} & \textit{for d} > 2 \end{cases}$$

local tadpoles:
$$F(\vec{p}_\perp) \sim \left(2^{5-d}\prod_{i=1}^d \left(1+(-)^{n_i}\right) - 2\sum_{a=1}^{16}\cos(\vec{p}_\perp\vec{y}_a)\right)$$

Localised gravity kinetic terms

Corrections to the 4d Planck mass in type II strings

Large volume limit: localised Einstein-Hilbert term in the 6d internal space

I.A.-Minasian-Vanhove '02 [18]

$$S_{\rm grav}^{IIB} = \frac{1}{(2\pi)^7 \alpha'^4} \int\limits_{M_4 \times \mathcal{X}_6} e^{-2\phi} \mathcal{R}_{(10)} + \frac{\chi}{(2\pi)^4 \alpha'} \int\limits_{M_4} \left(2\zeta(3) e^{-2\phi} + \frac{2\pi^2}{3} \right) \mathcal{R}_{(4)}$$

4-loop σ -model \nearrow vanishes for orbifolds

localisation width $w \sim |\chi| I_s = I_p^{(4)}$

in agreement with general arguments of localised gravity

Dvali-Gabadadze-Porrati '00

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

localised vertices from $\mathcal{R}_{(4)}$ can emit massless closed strings

⇒ local tadpoles in the presence of distinct 7-brane sources

propagation in 2d transverse bulk $ightarrow \log R_{\perp}$ corrections

exact computation: difficult either in CY or in orbifolds - genus 3/2

computation in the degeneration limit

for Z_N orbifold $(\chi \sim N)$

$$\sim -\sum_{q_{\perp} \neq 0} g_s^2 \, T N \mathrm{e}^{-w^2 q_{\perp}^2/2} rac{1}{q_{\perp}^2 R_{\perp}^2} = -N g_s^2 \, T \log (R_{\perp}/w) + \cdots$$

 $T = T_0/g_s$: brane tension

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

Kähler potential:

$$\mathcal{K} = -2 \ln \left(\mathcal{V} + \xi + \eta \ln \frac{\mathcal{V}_\perp}{w^2} + \mathcal{O}(\frac{1}{\mathcal{V}}) \right) = -2 \ln \left(\mathcal{V} + \eta \ln \mu^2 \mathcal{V}_\perp \right)$$

$$\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 & \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi \text{ [16]}$$

Using 3 mutual orthogonal 7-brane stacks with D-terms (magnetic fluxes) and minimising with respect to transverse volume ratios $_{[13]}$

$$\Rightarrow V \simeq rac{3\eta \mathcal{W}_0^2}{\mathcal{V}^3} \left(\ln \mu^6 \mathcal{V} - 4
ight) + 3 rac{d}{\mathcal{V}^2} \quad \mathcal{W}_0$$
: constant superpotential, d : D-term

dS minimum:
$$-0.007242 < {d\over \eta {\cal W}_0^2 \mu^6} \equiv
ho < -0.006738$$
 with ${\cal V} \simeq e^5/\mu^6$ [20]

FI D-terms

$$V_{D_i} = rac{d_i}{ au_i} \left(rac{\partial K}{\partial au_i}
ight)^2 = rac{d_i}{ au_i^3} + \mathcal{O}(\eta_j)$$

 au_i : world-volume modulus of D7_i-brane stack with $\mathcal{V}=(au_1 au_2 au_3)^{1/2}$

$$\eta_i \equiv \eta \implies V_{tot} = \frac{3\eta W_0^2}{V^3} \left(\ln(V \mu^6) - 4 \right) + \frac{d_1}{\tau_1^3} + \frac{d_2}{\tau_2^3} + \frac{d_3 \tau_1^3 \tau_2^3}{V^6}$$

minimising with respect to au_1 and $au_2 \Rightarrow rac{ au_i}{ au_j} = \left(rac{d_i}{d_j}
ight)^{1/3} \Rightarrow$

$$V_D = 3 \frac{d}{V^2}$$
 with $d = (d_1 d_2 d_3)^{1/3}$

2 extrema min+max $\rightarrow -0.007242 < \rho < -0.006738 \leftarrow$ +ve energy [18] [24]

perturbative moduli stabilisation I.A.-Chen-Leontaris '18, '19

$$\xi = -\frac{1}{4}\chi f(g_s); \quad f(g_s) = \begin{cases} \zeta(3) \simeq 1.2 & \text{smooth CY} \\ \frac{\pi^2}{3}g_s^2 & \text{orbifolds} \end{cases} \quad \eta = -\frac{1}{2}g_s T_0 \xi$$

dS minimum: $-0.007242 < \frac{d}{\eta \mathcal{W}_0^2 \mu^6} \equiv \rho < -0.006738$ with $\mathcal{V} \simeq \mathrm{e^5}/\mu^6$

exponentially large volume:

$$\mu = \frac{e^{\xi/6\eta}}{w} = \sqrt{|\chi|} e^{-\frac{1}{3g_sT_0}} \to 0 \quad \Rightarrow \quad$$

weak coupling and

large χ or/and \mathcal{W}_0 from 3-form flux to keep ρ fixed

requirement: negative χ (η < 0) [16] and surplus of D7-branes (T_0 > 0)

- Inflaton: canonically normalised $\phi = \sqrt{2/3} \ln \mathcal{V}$ (in Planck units)
- one relevant parameter: ρ or $x = -\ln(-4\rho/3) 16/3$

0 < x < 0.072 for dS minimum

• extrema $V'(\phi_{\pm})=0$

$$\phi_{+} - \phi_{-} = \sqrt{2/3} \left(W_0(-e^{-x-1}) - W_{-1}(-e^{-x-1}) \right)$$

 $W_{0/-1}$: Lambert functions satisfying $W(xe^x) = x$

$$\frac{V(\phi_{+})}{V(\phi_{-})} = \frac{\left(W_{0}(-e^{-x-1})\right)^{3} \left(2+3W_{-1}(-e^{-x-1})\right)}{\left(W_{-1}(-e^{-x-1})\right)^{3} \left(2+3W_{0}(-e^{-x-1})\right)}$$

• slow roll parameter $\eta(\phi_{-/+}) = \frac{V''(\phi_{-/+})}{V(\phi_{-/+})} = -9 \frac{1+W_{0/-1}(-e^{-x-1})}{\frac{2}{3}+W_{0/-1}(-e^{-x-1})}$ [25]

successful inflation possible around the minimum from the inflection point

Inflation possibilities

ullet Friedmann equations with time replaced by the inflaton \Rightarrow

Hubble parameter
$$\rightarrow H'(\phi) = \mp \frac{1}{\sqrt{2}} \sqrt{3H^2(\phi) - V(\phi)}$$

- slow-roll parameters: $\eta(\phi) = \frac{V''(\phi)}{V(\phi)}, \quad \epsilon(\phi) = \frac{1}{2} \left(\frac{V'(\phi)}{V(\phi)}\right)^2$
- number of e-folds by the end of inflation: $N(\phi) = \int_{\phi_{end}}^{\phi} \frac{d\phi}{\sqrt{2\epsilon}}$

Observational constraints at the horizon exit $\phi = \phi_*$:

- **1** N_* ≈ 50 − 60
- 2 spectral index of power spectrum $n_S-1=2\eta_*-6\epsilon_*\simeq -0.04$
- **3** amplitude of scalar perturbations $A_S = \frac{V_*}{24\pi^2\epsilon_*} \simeq 2.2 \times 10^{-9}$
- ⇒ inflation possible around the minimum from the inflection point [20]

dS vacuum metastability [3]

- through tunnelling $H_c > H_-$
- over the barrier $H_c < H_-$

- H_c²/H²

CdL region

HM region

10⁻⁴

10⁻³

10⁻²

10⁻¹

$H_c > H_-$ Coleman - de Luccia instanton

 $H_c < H_-$ Hawking - Moss transition

$$\frac{H_c^2}{H_-^2} \equiv -\frac{3V''(\phi_+)}{4V(\phi_-)}$$

HM region:
$$\Gamma \sim e^{-B}$$
; $B \simeq \frac{24\pi^2}{V} \frac{\Delta V}{V}$

$$\frac{\Delta V}{V} \simeq 24\sqrt{2}x^{3/2} \Rightarrow$$

$$B \simeq 3 \times 10^9$$
 for $x \simeq 3 \times 10^{-4}$

Conclusions

Novel D-terms in supergravity that do not gauge the R-symmetry allow to write a positive cosmological constant even without matter fields their implementation in string theory: open problem

New mechanism of moduli stabilisation is string theory (type IIB)

- perturbative: weak coupling, large volume
- based on log corrections in the transverse volume of 7-branes
 due to local tadpoles induced by localised gravity kinetic terms
 arising only in 4 dimensions!
- can lead to de Sitter vacua in string theory
 explicit counter-example to dS swampland conjecture
- inflation possible around the minimum from the inflection point