Prospects of closing the window of sterile neutrino dark matter

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

10th International Conference on New Frontiers in Physics

OAC, Chania, Crete, Greece
Standard Model: Major Problems

Gauge fields (interactions): γ, W^\pm, Z, g

Three generations of matter: $L = (\nu_L, e_L), e_R; Q = (u_L, d_L), d_R, u_R$

- Describes
 - all experiments dealing with electroweak and strong interactions

- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Inflationary stage

- Neutrino oscillations
- Dark matter (Ω_{DM})
- Baryon asymmetry (Ω_B)
- Inflationary stage

Only direct evidence for New Physics

Dmitry Gorbunov (INR)
Neutrino oscillations: masses and mixing angles

Solar 2×2 “subsector”

Atmospheric 2×2 “subsector”

Δm^2 [eV2]

10^{-3}

10^{-6}

10^{-9}

10^{-4}

10^{-2}

10^{0}

10^{2}

$\tan^2 \theta$

$\sin^2 2 \theta_{13} \approx 0.08$

0.6 0.7 0.8 0.9 1

0.6 0.7 0.8 0.9 1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

$| \Delta m^2 | (10^{-3} eV^2)$

0.008 eV

0.05 eV

http://hitoshi.berkeley.edu/neutrino/

DAYA-BAY, RENO, T2K:

$\sin^2 2 \theta_{13} \approx 0.08$

arXiv:0806.2237

$m_1 > 0.008$ eV

$m_2 > 0.05$ eV

Prospects of closing the window of sterile neutrino dark matter

Dmitry Gorbunov (INR)
Physics behind the neutrino oscillations is still elusive

- nature of neutrino mass (Dirac vs Majorana)
- neutrino mass hierarchy
- CP-violation
- relevance for the matter-antimatter asymmetry
- neutrino anomalies
 - LSND \rightarrow MiniBooNE
 - SAGE & GALLEX (gallium anomaly)
 - reactor antineutrinos \rightarrow DANSS, NEUTRINO-4
 - do not fit to 3ν
Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile: new fermions uncharged under the SM gauge group
neutrino: explain observed oscillations by mixing with SM (active) neutrinos

Attractive features:

- possible to achieve within renormalizable theory
- only $N = 2$ Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with $N \geq 3$ at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?
Sterile neutrinos: the simplest model

Three Generations of Matter (Fermions) spin $\frac{1}{2}$

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 MeV</td>
<td>$\frac{2}{3}$</td>
<td>u (up)</td>
</tr>
<tr>
<td>1.27 GeV</td>
<td>$\frac{2}{3}$</td>
<td>c (charm)</td>
</tr>
<tr>
<td>171.2 GeV</td>
<td>$\frac{2}{3}$</td>
<td>t (top)</td>
</tr>
<tr>
<td>4.8 MeV</td>
<td>$-\frac{1}{3}$</td>
<td>d (down)</td>
</tr>
<tr>
<td>104 MeV</td>
<td>$-\frac{1}{3}$</td>
<td>s (strange)</td>
</tr>
<tr>
<td>4.2 GeV</td>
<td>$-\frac{1}{3}$</td>
<td>b (bottom)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.511 MeV</td>
<td>-1</td>
<td>e (electron)</td>
</tr>
<tr>
<td>105.7 MeV</td>
<td>-1</td>
<td>μ (muon)</td>
</tr>
<tr>
<td>1.777 GeV</td>
<td>-1</td>
<td>τ (tau)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<0.0001 \text{ eV}$</td>
<td>0</td>
<td>ν_e (electron neutrino)</td>
</tr>
<tr>
<td>$\sim 0.01 \text{ eV}$</td>
<td>0</td>
<td>ν_μ (muon neutrino)</td>
</tr>
<tr>
<td>$\sim 0.04 \text{ eV}$</td>
<td>0</td>
<td>ν_τ (tau neutrino)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.2 GeV</td>
<td>0</td>
<td>Z^0 (weak force)</td>
</tr>
<tr>
<td>$>114 \text{ GeV}$</td>
<td>0</td>
<td>H (Higgs boson)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4 GeV</td>
<td>± 1</td>
<td>W^\pm (weak force)</td>
</tr>
</tbody>
</table>

Dmitry Gorbunov (INR)
Prospects of closing the window of sterile neutrino dark matter
01.09.2021, ICNFP2021 6 / 41
Seesaw mechanism: $M_N \gg 1$ eV

With $m_{\text{active}} \lesssim 1$ eV we work in the seesaw (type I) regime:

$$\mathcal{L}_N = \bar{N} i \gamma \eta N - f \bar{L}_e \tilde{H} N - \frac{M_N}{2} \bar{N}^c N + \text{h.c.}$$

Higgs gains $\langle H \rangle = v/\sqrt{2}$ and then

$$\psi_N = \frac{1}{2} \begin{pmatrix} \bar{N}_c \\ \eta \end{pmatrix} \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_N \end{pmatrix} \begin{pmatrix} \nu_e \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy $M_N \gg M_D \equiv \nu \frac{f}{\sqrt{2}}$ we have

flavor state $\nu_e = U \nu_1 + \theta N$ with $U \approx 1$ and

active-sterile mixing: $\theta = \frac{M_D}{M_N} = \frac{v f}{2M_N} \ll 1$

and mass eigenvalues

$\approx M_N$ and $-m_{\text{active}} = \theta^2 M_N \ll M_N$
Violation of L, C and CP symmetries

\[\mathcal{L}_N = \overline{N} i \partial \tau N - f \overline{L}_e H N - \frac{M_N}{2} \overline{N}^c N + \text{h.c.} \]

- $f = 0 \quad \rightarrow \quad$ free fermion, no need to call 'sterile'
- $M_N = 0 \quad \rightarrow \quad$ N and ν form pure Dirac neutrino, the most boring case, worth than we have with the Higgs boson one may refuse to call it 'new physics'
- $f \neq 0, \quad M_N \neq 0 \quad \rightarrow \quad$ introduces new massive parameter, violates lepton symmetry L
 (and C- and CP-symmetry with several N's)
Seesaw mechanism: $M_N \gg 1$ eV

With $m_{\text{active}} \lesssim 1$ eV we work in the seesaw (type I) regime:

$$\mathcal{L}_N = \overline{N}_I i \mathcal{D} N_I - f_{\alpha I} \overline{L}_\alpha \tilde{H} N_I - \frac{M_{N I}}{2} \overline{N}_I^c N_I + \text{h.c.}$$

When Higgs gains $\langle H \rangle = v/\sqrt{2}$ we get in neutrino sector

$$\mathcal{V}_N = \frac{1}{2} \left(\overline{v}_1, \ldots, \overline{N}_1 \right)^T \begin{pmatrix} 0 & v \hat{f} \sqrt{2} \\ v \hat{f}^T \sqrt{2} & \hat{M}_N \end{pmatrix} \left(v_1, \ldots, v_1 \right) + \text{h.c.}$$

Then for $M_N \gg \hat{M}^D = v \hat{f} \sqrt{2}$ we find the eigenvalues:

$$\simeq \hat{M}_N \quad \text{and} \quad \hat{M}^\nu = - (\hat{M}^D)^T \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$$

Mixings: flavor state $\nu_\alpha = U_{\alpha i} v_i + \theta_{\alpha I} N_I$

- active-active mixing: $U^\dagger \hat{M}^\nu U = \text{diag} (m_1, m_2, m_3)$
- active-sterile mixing: $\theta_{\alpha I} = \frac{(M^D)^T_{\alpha I}}{M_I} \propto \hat{f}^T \frac{v}{M_N} \ll 1$
Sterile neutrino: a vast region of mass

Within the seesaw paradigm, as far as

$$m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N$$

Any set

(mass scale M_N, Yukawa coupling f)

is viable

And with special tuning or symmetry larger (but not smaller) mixing

is viable

$$\hat{m}_a \sim \hat{f}^T \frac{1}{\hat{M}_N} \hat{f} v^2$$
Dark Matter properties from cosmology: $p = 0$

(If) particles:

1. (almost) electrically neutral
2. (almost) collisionless
3. stable on cosmological time-scale

 requires new (almost) conserved quantum number
4. produced in the early Universe at $T > 10 \text{ eV}$
5. all matter inhomogeneities (perturbations) are adiabatic:

$$\delta \left(\frac{n_B}{n_{DM}} \right) = \delta \left(\frac{n_B}{n_{\gamma}} \right) = \delta \left(\frac{n_\nu}{n_{\gamma}} \right) = 0$$
Sterile neutrino: well-motivated keV-mass Dark Matter

- massive fermions giving mass to active neutrino through mixing (seesaw)

\[m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N \]

- unstable, \(N \rightarrow \nu \nu \nu \) is always open but exceeding the age of the Universe if (applicable for \(M_N < M_W \))

\[\tau_{N \rightarrow 3\nu} \sim \frac{1}{G_F^2 M_N^5 \theta^2_{\alpha N}} \implies \theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \text{ keV}}{M_N} \right)^5 \]

- with seesaw constraint \(m_a \sim \theta^2 M_N \)

\[\tau_{N \rightarrow 3\nu} \sim \frac{1}{G_F^2 M_N^4 m_\nu} \sim 10^{11} \text{ yr} \left(\frac{10 \text{ keV}}{M_N} \right)^4 \]
Sterile neutrino: indirect searches

\[m_a \sim \frac{f^2 \nu^2}{M_N^2} M_N \sim \theta^2 M_N \]

- unstable, but exceeding the age of the Universe if

\[\frac{\theta^2}{3 \times 10^{-3}} < \left(\frac{10 \text{ keV}}{M_N} \right)^5 \]

- DM sterile neutrinos can be searched at X-ray telescopes because of two-body radiative decay give limits in absence of the feature a narrow line \(\frac{\delta E_\gamma}{E_\gamma} \sim \nu \sim 10^{-3} \)

at photon frequency \(E_\gamma = \frac{M_N}{2} \)

\[\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N} \right)^4 \]

\[\text{FLUX}_{\gamma} \propto \Gamma_N \rho_N / M_N \ldots \]
Can seesaw neutrino serve as DM?

X-ray limits (roughly)

\[
\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N} \right)^4
\]

see-saw relation

\[
\frac{\theta^2}{10^{-5}} \sim \left(\frac{m_a}{0.1 \text{ eV}} \right) \left(\frac{10 \text{ keV}}{M_N} \right)
\]

one order down

\[
\frac{\theta^2}{10^{-7}} \lesssim \left(\frac{1 \text{ keV}}{M_N} \right)^4
\]

\[
\frac{\theta^2}{10^{-4}} \sim \left(\frac{m_a}{0.1 \text{ eV}} \right) \left(\frac{1 \text{ keV}}{M_N} \right)
\]

How light can be this dark matter?
Galactic Dark Matter

X-ray limits (roughly)

$$\frac{\theta^2}{10^{-7}} \lesssim \left(\frac{1 \text{ keV}}{M_N} \right)^4$$

see-saw relation

$$\frac{\theta^2}{10^{-4}} \sim \left(\frac{m_a}{0.1 \text{ eV}} \right) \left(\frac{1 \text{ keV}}{M_N} \right)$$

Pauli blocking for fermions in a dwarf galaxy:

$$M_X \gtrsim 750 \text{ eV}$$

$$f(p, x) = \frac{\rho_x(x)}{M_X} \cdot \frac{1}{\left(\sqrt{2\pi M_X v_X} \right)^3} \cdot e^{-\frac{p^2}{2M_X^2v_X^2}} \bigg|_{p=0} \leq \frac{g_X}{(2\pi)^3}$$

DM sterile neutrino cannot contribute much to neutrino masses
Refined constraint for DM: phase space density

after decoupling $f_i = f_i(\kappa) = \text{const}$ and defines psd, which remains intact due to the Liouville theorem even in galaxies with inhomogeneous distribution in space.

course grained phase space density:

$$f(\kappa, \mathbf{x}, t) \leq \max_\kappa f_i(\kappa)$$

observation:

$$Q = \frac{\rho}{\langle v_\parallel^2 \rangle^{3/2}} = Q \cdot 1 \frac{M_\odot/\text{pc}^3}{(\text{km/s})^3} = \left(5 \cdot 10^{-3} - 2 \cdot 10^{-2}\right) \frac{M_\odot/\text{pc}^3}{(\text{km/s})^3}.$$

$$Q \simeq 3^{3/2} \frac{\rho_{DM}}{\langle v_{DM}^2 \rangle^{3/2}} = 3^{3/2} m^4 \frac{n}{\langle P^2 \rangle^{3/2}} = 3^{3/2} m^4 f(P, \mathbf{x}).$$

$$m^4 \gtrsim \frac{Q}{3^{3/2} \max f_i}$$

Dmitry Gorbunov (INR)
Matter perturbations are adiabatic: \(\delta(n_B/n_{DM}) = 0 \)

- CMB is isotropic, but “up to corrections, of course…”
 - Earth movement with respect to CMB
 \[\Delta T_{\text{dipole}} \sim 10^{-3} \]
 - More complex anisotropy:
 \[\Delta T \sim 10^{-4} \]

- There were matter inhomogeneities \(\Delta \rho/\rho \sim \Delta T/T \) at the stage of recombination \((e + \rho \rightarrow \gamma + H^+) \)
 - Jeans instability in the system of gravitating particles at rest \(\Rightarrow \Delta \rho/\rho \uparrow \) galaxies (CDM halos)
 - \(\Delta \rho_{DM}/\rho_{DM} \sim a \sim 1/T \) from \(T = 0.8 \text{ eV} \),
 while \(\Delta \rho_B/\rho_B \sim a \sim 1/T \) only after recombination \(T = 0.25 \text{ eV} \)
 - without DM total growth factor would be 1100
 not enough to explain structures!

Dmitry Gorbunov (INR) Prospects of closing the window of sterile neu 01.09.2021, ICNFP2021 17/41
Sterile neutrinos produced in plasma...

typical momenta are

\[\frac{p_X}{M_X} \propto \frac{a_d}{a} \sim \frac{3T}{M_X} \left(\frac{g^*_\ast(T)}{g^*_\ast(T_d)} \right)^{1/3} \]

at RD/MD transition (equality) their velocities are

\[v \sim \frac{T}{1\,\text{eV}} \frac{1\,\text{keV}}{M_X} \sim 10^{-3} \]

Warm Dark Matter:
all inhomogeneities of sizes smaller than (roughly)

\[l = v \times t_{\text{Universe}} \]

are smoothed out due to free streaming

it allows to test the model
Tesing with satellite counting. . .

Heavy (CDM-like) Light (WDM-like)

\[
\left(\frac{dN_{obj}}{d\ln M} \right)_{WDM} / \left(\frac{dN_{obj}}{d\ln M} \right)_{CDM}
\]

\[
\log_{10} \frac{M}{M_{\odot}}
\]
Production in oscillations

\[\frac{\partial}{\partial t} f_s(t, p) - H_p \frac{\partial}{\partial p} f_s(t, p) = \frac{1}{2} \Gamma_\alpha P(\nu_\alpha \to \nu_s) f_\alpha(t, p). \]

\(\Gamma_\alpha \propto G_F^2 T^4 E \) is the weak interaction rate in plasma

\[P(\nu_\alpha \to \nu_s) = \sin^2 2\theta^\text{mat}_\alpha \cdot \sin^2 \left(\frac{t}{2t^\text{mat}_\alpha} \right), \]

\[t^\text{mat}_\alpha = \frac{t^\text{vac}_\alpha}{\sqrt{\sin^2 2\theta_\alpha + (\cos 2\theta_\alpha - V_{\alpha\alpha} \cdot t^\text{vac}_\alpha)^2}}, \]

\[\sin 2\theta^\text{mat}_\alpha = \frac{t^\text{mat}_\alpha}{t^\text{vac}_\alpha} \cdot \sin 2\theta_\alpha, \quad t^\text{vac}_\alpha = \frac{2E}{M_N^2} \]

sign of the effective plasma potential matters:

- \(V_{\alpha\alpha} < 0 \) \(\implies \) mixing gets suppressed \(\implies \) \(V_{\alpha\alpha} \sim #G_F^2 T^4 E \)
- \(V_{\alpha\alpha} > 0 \) \(\implies \) amplification via resonance \(\implies \) \(V_{\alpha\alpha} \sim #G_F T^2 \mu_{L\alpha} \)
Most recent result of NuSTAR

1908.09037, see also XMM-Newton 2102.02207

m_x [keV]

$\sin^2 2\theta$

MW Sat. Counts

Suzaku

Fermi-GBM + INTEGRAL

BBN Limit (Resonant Production)

Chandra + XMM

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

BBN Limit
(Resonant Production)

Chandra + XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.

Counts

NuSTAR

Chandra

+ XMM

Suzaku

Fermi-GBM

+ INTEGRAL

MW Sat.
eROSITA (0.2-10 keV), ART-XC (4-30 keV)
Prospects of closing the window of sterile neutrino dark matter

Chandra and XMM
Suzaku
Fermi-GBM and Integral

MW SC

BBN Limit

eROSITA
eROSITA + ART-XC
ART-XC

$\sin^2(2\theta)$ vs. m_s [keV]

10^{-10}
10^{-11}
10^{-12}
10^{-13}
10^{-14}
Prospects of closing the window of sterile neutrino dark matter
More robust, but less sensitive

1505.07829, V. Barinov, R. Burenin, D.G., R. Krivonos

4 yr eROSITA, CC perfect DM map

- $\ell = 10^1 - 10^4$
- $\ell = 10^2 - 10^4$ (baseline)
- $\ell = 10^3 - 10^4$
- $\nu_s < 10^{13} M_\odot$

Interaction strength, $\sin^2 2\theta$ vs. Dark matter mass, m_s [keV]

- Too much DM
- Excluded by X-ray
- Too little DM

My 95 C.L. ART-XC

My 95 C.L. Constraints (eRosita)
Closing sterile neutrino DM? ... in a minimal variant

situation changes with just 1 new d.o.f. $\phi \bar{N}^{c} N$

- reopen large mixings with $\Omega_{N} < \Omega_{DM}$ (part of DM)
 to avoid X-ray bounds:
 $$\theta_{X-ray}^2 = \theta_{\alpha I}^2 \frac{\Omega_{N}}{\Omega_{DM}}$$

- direct searches: Troitsk, KATRIN can be seesaw neutrino

- small mixing: dominant DM
 testing with future telescopes

- reopen small masses with $\nu_{N} \ll \nu_{WDM}$,
 e.g. cold sterile neutrino

Conclusions

- sterile neutrino DM implies one massless active neutrino (with $N = 3$ sterile neutrino seesaw)
- we can fully explore the model with new X-ray data (e.g. on board of SRG)
- more dwarf galaxies observed around us
- progress in checking BBN predictions
- much larger room with new ingredients in the sterile sector
Searches for DM are deep inside the forbidden region.
Larger mixing: Suppression of production

Form only a fraction of DM !!

\[P(\nu_\alpha \rightarrow \nu_s) = \sin^2 2\theta^\text{mat}_\alpha \cdot \sin^2 \left(\frac{t}{2t^\text{mat}_\alpha} \right), \quad \sin 2\theta^\text{mat}_\alpha = \frac{t^\text{mat}_\alpha}{t^\text{vac}_\alpha} \cdot \sin 2\theta_\alpha, \]

\[t^\text{mat}_\alpha = \frac{t^\text{vac}_\alpha}{\sqrt{\sin^2 2\theta_\alpha + (\cos 2\theta_\alpha - V_{\alpha\alpha} \cdot t^\text{vac}_\alpha)^2}}, \quad t^\text{vac}_\alpha = \frac{2E}{M_N^2} \]

Most efficient production occurs at (DW)

\[T_{\text{max}} \approx 133 \text{ MeV} \left(\frac{1 \text{ keV}}{M_N} \right)^{1/3} \]

It is suppressed if \(T_{\text{reh}} \ll T_{\text{max}} \)

Suppression of cosmological production

Add more ingredients e.g.

$$\bar{L}HN + M_N \tilde{N}^c N \rightarrow \bar{L}HN + \phi \tilde{N}^c N$$

Scalar? Majoron? (lepton symmetry)

$$P(\nu_\alpha \rightarrow \nu_s) = \sin^2 2\theta^\text{mat}_\alpha \cdot \sin^2 \left(\frac{t}{2t^\text{mat}_\alpha} \right), \quad \sin 2\theta^\text{mat}_\alpha = \frac{t^\text{mat}_\alpha}{t^\text{vac}_\alpha} \cdot \sin 2\theta_\alpha,$$

$$t^\text{mat}_\alpha = \frac{t^\text{vac}_\alpha}{\sqrt{\sin^2 2\theta_\alpha + (\cos 2\theta_\alpha - V_{\alpha\alpha} \cdot t^\text{vac}_\alpha)^2}}, \quad t^\text{vac}_\alpha = \frac{2E}{M^2_N}.$$

Coupling to scalar can change the effective neutrino Hamiltonian in the primordial plasma

$$\begin{pmatrix} V_{\alpha\alpha} & M_D \\ M_D & V_{NN} + M_N \end{pmatrix}$$
Suppression of production with $\phi \tilde{N}^c N$

- strong coupling to scalar or Majoron, which decreases the active-sterile mixing in primordial plasma

 $\phi \tilde{N}N \rightarrow G \tilde{N}N \tilde{N} \rightarrow V_{NN}$

- homogeneous $\phi = \phi(t)$ makes sterile neutrino mass changing in cosmology, which suppresses the early-time oscillations

 $\phi(t)NN \rightarrow M_N = M_N(t) = M_N(T)$

- sterile neutrinos are massless in the early Universe
- sterile neutrinos are superheavy in the early Universe
Massless in the early Universe

\[\mathcal{L} = \frac{1}{2} g^{\mu \nu} \partial_\mu \phi \partial_\mu \phi - V(\phi) + \frac{f}{2} \phi \bar{N}^c N + \text{h.c.} \]

with a hidden sector... to make the phase transition:

\[
\begin{align*}
T > T_c & \implies \langle \phi \rangle = 0, \quad M_N = 0 \\
T < T_c & \implies \langle \phi \rangle = v_\phi, \quad M_N = f v_\phi
\end{align*}
\]

So the neutrino is pure Dirac fermion at the beginning...

The production in oscillations will be suppressed, if

\[T_c < T_{\text{max}} \approx 133 \text{ MeV} \left(\frac{1 \text{ keV}}{M_N} \right)^{1/3} \]

there is always a chirality flip contribution \(\propto M_D^2 / E^2 \)

similar for \(\langle \phi \rangle \neq 0 \) disappearing later...
Results: large mixing is allowed for details see 1705.02184

Important:

1. seesaw light sterile neutrino (dashed lines: $m_a \sim 0.008 - 0.2$ eV)
2. can be directly tested !! (between green and white lines)
3. Warm, so most probably only a part of DM

$m_a \sim \theta^2 M_N$
Sterile neutrinos: a part of dark matter

$P(k) [(\text{Mpc}/h)^3]$

ΛCDM

$f_{\text{ncdm}} = 0.05 \ m_{\text{ncdm}} = 1.5 \text{ eV}$

$f_{\text{ncdm}} = 0.25 \ m_{\text{ncdm}} = 10^3 \text{ eV}$

SDSSDR11

$\log_{10} m_{\text{ncdm}} / \text{eV}$

$N_{\text{sat}} \simeq 160$

$N_{\text{sat}} \simeq 60$

$\frac{dN_{\text{sat}}}{d\ln M}$

$M [\text{M}_\odot / h]$
The oscillating scalar field

\[\mathcal{L} = \frac{1}{2} g^{\mu \nu} \partial_\mu \phi \partial_\mu \phi - \frac{1}{2} m_\phi^2 \phi^2 + \frac{f}{2} \phi \bar{N}^c N + \text{h.c.} \]

homogeneous scalar field in FLRW expanding Universe

\[\ddot{\phi} + 3H\dot{\phi} + m_\phi^2 \phi = 0 \]

two-stage evolution:

\[m_\phi < H(t) \implies \phi = \phi_i = \text{const} \]
\[m_\phi > H(t) \implies p = \langle E_k \rangle - \langle E_p \rangle = 0, \quad \rho \sim m_\phi^2 \phi^2 \propto 1/a^3 \]

- At \(m_\phi < H(t) \) sterile neutrino mass is \(M = M_N + f\phi_i \gg M_N \)
- At present sterile neutrino mass is \(M_N \sim 1 \text{ keV} \)
- If at \(m_\phi > H(t) \) sterile neutrinos are nonrelativistic most time, \(m_\phi = H_{\text{osc}} = \frac{T_{\text{osc}}^2}{M_{\text{Pl}}} \)

\[M(t) = M_N + f\phi_i \frac{T^3}{T_{\text{osc}}^3} > T \]
Subtleties with Effective neutrino mass

\[M_{N_{i/3}} = 3T \]

\[M_N = 3T \]

\[3T_c \]

\[M \]

\[M_{N_i} \]

\(T_f \)

\(T_c \)

\(T_{osc} \)

\(M_{N_{i/3}} \)

\[- \rho_\phi > \rho_N, \text{ so the scalar is DM} \]

or, in case of rapid production, must account for the backreaction

\[\text{Yukawas induce } \lambda \phi^4 \sim f^4/(16\pi^2)\phi^4 \text{ which may dominate instead} \]

\[\text{Both } L_{osc} \text{ and } \theta_{eff} \text{ change with } M(t), \text{ which oscillates} !! \]

very complicated system: three oscillators with time-dependent couplings
sterile neutrino mass

\[M(t) = M_N + f\phi(t) = M_N + f\phi_i \frac{T^3}{T_{osc}} \cos(m\phi t) \]

1) sometimes crosses zero, which allows for sterile neutrino production by a 'slow' oscillator \(m\phi \ll M_N \) with large amplitude
the produced sterile neutrinos are almost at rest Cold Dark Matter
avoiding limits from structure formation
avoiding X-ray limits with tiny mixing angle

2) Both \(L_{osc} \) and \(\theta_{eff} \) change with \(M(t) \), which oscillates !!
very complicated system: three oscillators with time-dependent couplings resonance
cool
Allowed regions for each mechanism

\[
\sin^2(2\theta_0) = 10^{-5} \quad M_0 = 1 \text{ keV}
\]

- \(m_\phi < 2M_N \)
- \(\Gamma_{\phi \to \nu\nu} < \ldots \)
- \(\rho_{\phi} + \rho_N \leq \rho_{DM} \)

\(\Omega_N \gtrsim \Omega_\phi \)
\(\Omega_N < \Omega_\phi \)
Another option: coupling to light inflaton

Non-resonant production (active-sterile mixing) is ruled out

Resonant production (lepton asymmetry) requires $\Delta M_{2,3} \lesssim 10^{-16} \text{ GeV}$

[arXiv:0804.4542, 0901.0011, 1006.4008]

Dark Matter production from inflaton decays in plasma at $T \sim m_\chi$

$M_{N_I} \overline{N}_i^{c} N_i \leftrightarrow f_i X \overline{N}_i N_i$

Can be “naturally” Warm ($250 \text{ MeV} < m_\chi < 1.8 \text{ GeV}$)

$M_1 \lesssim 15 \times \left(\frac{m_\chi}{300 \text{ MeV}} \right) \text{ keV}$

M. Shaposhnikov, I. Tkachev (2006)

Limits form SN

Energy transfer

Energy loss

$\eta = 0$

$\Omega_s h^2 = 0.1$

Sterile Neutrino Mass (keV)

sin$^2 (2\theta)$

10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 1 0.1

Energy transfer

Energy loss

$\eta = 0$

$\Omega_s h^2 = 0.1$

Sterile Neutrino Mass (keV)

sin$^2 (2\theta)$

10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 1 0.1

100%

1%

10%

$\sin^2 2\theta$

Sterile Neutrino Mass (keV)

10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 1 0.1

100%

1%

10%

$\sin^2 2\theta$

Sterile Neutrino Mass (keV)