Collective flow in relativistic heavy-ion collisions

mini review of the experimental results

Vipul Bairathi¹ and Kishora Nayak²

¹Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile ²Institute of Particle Physics, Central China Normal University, China

Outline:

- Quark Gluon Plasma
- Collective flow
- Experimental results from RHIC and LHC
- Summary

Quark Gluon Plasma (QGP)

- At extreme temperatures 10¹² K (~200 MeV) and pressure, the hadronic matter transform into a new phase of deconfined quarks and gluons called Quark Gluon Plasma (QGP).
- QGP is a state of matter in which quarks and gluons are no longer confined within hadrons.
- Heavy-ion collisions at relativistic energies are a way to achieve such extreme conditions of temperature and pressure to produce the QGP state of matter.
- <u>Signatures supporting formation of QGP:</u> collective flow, jet quenching, direct photons, and Debye screening effects.

Sketch of QCD phase diagram

Baryon chemical potential $\mu_{_{\rm B}}$

References:

- J. Schukraft, Nucl. Phys. A 967, 1 (2017).
- E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017), arXiv:1412.8393.
- P. Braun-Munzinger, V. Koch, T. Schafer, and J. Stachel, Phys.Rept. 621, 76 (2016), arXiv:nucl-th/1510.00442.
- B. V. Jacak and B. Müller, Science 337, 310 (2012).
- B. Müller and J. L. Nagle, Ann. Rev. Nucl. Part. Sci. 56, 93 (2006), arXiv:nucl-th/0602029.

Formation of QGP

QGP can be formed by colliding heavy-ions at relativistic energies in Laboratory

Relativistic Heavy Ion Collider at BNL-AGS

- Operating since year 2000
- Collision systems: p, d, He, Cu, Zr, Ru, Au, U
- Energy range $\sqrt{s_{NN}} = 7.7 200 \text{ GeV}$

Large Hadron Collider at CERN-SPS

- Operating since year 2009
- Collision systems: p, Pb, Xe
- Energy range $\sqrt{s_{NN}} = 0.9 13 \text{ TeV}$

Collective Flow

Directed flow (v_1)

Sideward collective motion of produced particles in the reaction plane (x-z plane) and generated during the nuclear passage time $(2R/\gamma)$ before thermalization.

- Probe for the early stage of collision dynamics
- Signature of the first-order phase transition
- Sensitive to equation of state (QGP/Hadronic)

• P. Klob, U. W. Heinz, Nucl. Phys. A715, (2003) 653c

Collective Flow

Different flow harmonics

Elliptic flow (v₂) and higher order harmonics

Momentum space anisotropy in the azimuthal angle distribution of produced particles with respect to the reaction plane.

- Sensitive to initial conditions of collisions
- Sensitive to transport properties (η/s) of system
- Probe for the particle production mechanism (e.g. quark coalescence)
- P. Klob, U. W. Heinz, Nucl. Phys. A715, (2003) 653c

Flow Measurements

▶ Single particle distribution:

$$E\frac{d^{3}N}{dp^{3}} = E\frac{d^{2}N}{2\pi p_{T}dp_{T}d\eta} \left[1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T},\eta) \cos\{n(\phi - \Psi_{n})\} \right]$$

anisotropic flow $v_n = \langle \cos[n(\phi - \Psi_n)] \rangle$, $\Psi_n = n^{th}$ -order reaction plane angle

> η-sub event plane method

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_{i=1}^M w_i \sin(n\phi_i)}{\sum_{i=1}^M w_i \cos(n\phi_i)} \right)$$

$$R = \sqrt{\langle \cos[n(\Psi_n^A - \Psi_n^B)] \rangle}$$

Event plane angle calculated in two sub-events A $(0.05 < \eta < 1.0)$ and B $(-1.0 < \eta < -0.05)$.

• M. Abdallah et al. (STAR), Phys. Rev. C 103, 064907 (2021)

• A.M. Poskanzer & S.A. Voloshin, Phys.Rev. C 58 (1998)

Rapidity dependence of directed flow (v₁)

RHIC

- ▶ Rapidity (y) dependence of direct flow (v₁) of identified particles from RHIC at various beam energies.
- \blacktriangleright Large percentage difference between v_1 of baryons and anti-baryons is observed compare to mesons. The difference increases with decrease in the collision energy.
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112, 162301 (2014)
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 120, 062301 (2018)

Slope of directed flow $v_1(y)$

First order phase transition:

► "Net particle" represents the excess yield of a particle species over it's antiparticle which is closely related to the initial transported quarks:

$$[v_1(y)]_{net-p} = \frac{[v_1(y)]_p - r(y)[v_1(y)]_{\overline{p}}}{1 - r(y)}$$

where r(y) is the ratio of observed anti-proton to proton yield at a given collision energy.

► A dip in dv_1/dy vs $\sqrt{s_{NN}}$ is observed for net-p and net- Λ unlike net-K around $\sqrt{s_{NN}} = 10\text{-}20$ GeV.

Indication of a first order QCD phase transition

- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112, 162301 (2014)
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 120, 062301 (2018)

Effect of EM field on directed flow of heavy quarks

- ► A large amount of electromagnetic field (eB~10¹⁸ G) is produced by the outgoing spectator at the highest RHIC energy.
- ▶ Heavy quarks (charm) are produced early $\tau_{CQs} \sim 0.1$ fm/c and hence can be affected by the produced EMF.
- ▶ Various models predict opposite v_1 for c and \overline{c} induced by the EMF and the magnitude much higher than the light quarks.

 ${\bf D}^0$ and ${f \overline{D}}^0$ ${\bf v}_1$ can probe the initial produced EMF

- U. Gürsoy et al., Phys. Rev. C 89, 054905 (2014)
- S. K. Das et al, Phys. Lett. B 768, 260-26 (2017)

Directed flow $v_1(y)$ of D0s

RHIC

\mathbf{v}_1 -slope $(d\mathbf{v}_1/d\mathbf{y})$:

Kaons: $-0.003 \pm 0.0001 \pm 0.0002$,

 $D^0: -0.080 \pm 0.017 \pm 0.016$.

- ► Charm quark v_1 -slope > Light quark v_1 -slope
- ▶ Negative v_1 for both D^0 and \overline{D}^0
- \triangle Δv_1 -slope $(d\Delta v_1/dy)$:
- ► Negligible Δv_1 splitting of \overline{D}^0 and \overline{D}^0
- AMPT and Hydro+EM models predict the v₁ sign of D⁰ correctly with magnitude higher than the light-flavor hadrons, but underpredicts the data
- Hydro+EM: S. Chatterjee, P. Bozek: Phys. Rev. Lett 120, 192301 (2018);
 Phys. Lett. B 798, 134955 (2019)
- AMPT: S. Singha, Md. Nasim, Phys Rev C 97, 064917 (2018)
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 120, 062301 (2018)
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 123, 162301 (2019)

- \mathbf{v}_1 -slope ($\mathbf{dv}_1/\mathbf{dy}$):
- ► Charm quark v_1 -slope > Light quark v_1 -slope
- Positive slope for D^0 and negative slope for \overline{D}^0
- \triangle Δv_1 -slope $(d\Delta v_1/dy)$:
- ▶ Positive slope of Δv_1 for charged hadrons and D⁰ mesons.

Evidence of magnetic field induced charge separation of heavy quarks

- Δv_1 -slope of D^0 meson is significantly higher than corresponding charged hadrons
 - ► Tilted source, delay in decay of EMF

• S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett. 125, 022301 (2020)

Summary: Directed flow

Indication of a first order QCD phase transition

• A dip in the net-p and net- Λ around collision energies 10-20 GeV shows the softening of EoS as predicted by various hydrodynamic and transport models.

Evidence of magnetic field induced charge separation of heavy quarks

- v_1 of charm quark is larger than the corresponding light flavor quarks.
- Δv_1 splitting between D^0 and \overline{D}^0 might be an evidence of magnetic field induced charge separation of heavy quarks
- The measurements are important for constraining the theoretical models which could not predicts the correct sign of Δv_1 -slope between the D^0 and \overline{D}^0

Effect of initial conditions (collision geometry/eccentricity):

- ► Flow harmonics increase with p_T then start saturating around $p_T \approx 2.0\text{-}3.0 \text{ GeV/c}$.
- ► Elliptic flow v₂ strongly depends on the centrality while higher order harmonics have weak centrality dependence.

B Sensitivity to the transport properties (shear viscosity to entropy density η/s):

- ▶ Higher order flow harmonics provide better constrains for the extraction of transport properties.
- ▶ 3+1D viscous hydro model with Glauber-MC initial conditions with $\eta/s = 0.08$ (≈1/4 π) agrees better with the experimental results.
- A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107, 252301 (2011)
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88, 014904 (2013)

LHC

■ Effect of initial conditions (collision geometry/eccentricity):

- ► Flow harmonics increase with p_T then start saturating around $p_T \approx 2.0\text{-}3.0 \text{ GeV/c}$.
- ► Elliptic flow v₂ strongly depends on the centrality while higher order harmonics have weak centrality dependence.

Sensitivity to the transport properties (shear viscosity to entropy density η/s):

- ▶ Higher order flow harmonics provide better constrains for the extraction of transport properties.
- ▶ 3+1D viscous hydrodynamic model with Glauber-MC initial conditions with $\eta/s = 0.08$ (≈1/4 π) agrees with the experimental results.
- J. Adam et al. (The ALICE Collaboration), Phys. Rev. Lett. 116, 132302 (2016)

Hydrodynamics flow:

- ▶ large v₂ for lighter mass particles compare to the heavier mass particles consistent with the hydrodynamics flow.
- ▶ Mass ordering of v_2 below $p_T < 2-3$ GeV/c indicates effect of radial flow.

Hadronisation via quark coalescence:

- ► Elliptic flow v_2 of baryons > mesons above intermediate $p_T \approx 2\text{--}3$ GeV/c. v_2 scaled by number of constituent quarks (n_q) follows a single curve.
- \blacktriangleright The NCQ scaling of v_2 suggests quark coalescence as dominate particle production mechanism.
- B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008)

LHC

Hydrodynamics flow:

- ▶ large v₂ for lighter mass particles compare to the heavier mass particles consistent with the hydrodynamics flow.
- ▶ Mass ordering of v_2 below $p_T < 2-3$ GeV/c indicates effect of radial flow.

■ Hadronisation via quark coalescence:

- ► Elliptic flow v_2 of baryons > mesons above intermediate $p_T \approx 2\text{--}3$ GeV/c. v_2 scaled by number of constituent quarks (n_q) follows a single curve.
- \blacktriangleright The NCQ scaling of v_2 suggests quark coalescence as dominate particle production mechanism.
- B. Abelev et. al (ALICE Collaboration), JHEP 06, 190 (2015)

Summary: Elliptic flow & higher harmonics

Sensitive to initial conditions and transport properties of the system

- Strong centrality dependence of elliptic flow v₂ compare to higher order harmonics.
- Weak/no centrality dependence of higher harmonics reflects E-by-E fluctuations as the origin of higher order flow harmonics.
- Agreement with 3+1D viscous hydrodynamics ($\eta/s = 0.08$) with Gluaber-MC fluctuating initial conditions suggests formation of strongly coupled quark gluon plasma.

Hydrodynamic flow and partonic collectivity

- Mass ordering of v_2 at low $p_T < 2-3$ GeV/c suggest hydrodynamic flow of identified hadrons.
- ullet NCQ scaling of v_2 at intermediate p_T indicates parton coalescence as dominate particle production mechanism.

Thank you!

10th International Conference on New Frontiers in Physics (ICNFP 2021)

