
Gaudi TBB migration
proposal

B. Wynne

07/04/2021



2

Gaudi TBB migration

tbb::task_scheduler_init
 - Used to set the overall size of the thread pool for an MT job
 - tbb::global_control sets a maximum, but does not override (apparent) internal 
limit of N_threads <= N_cores

tbb::task
 - Each algorithm’s execute() method wrapped in a task class for parallel 
execution, then enqueued

Both tbb::task_scheduler_init and tbb::task are marked deprecated

tbb::task_arena can replace both components, and is supported in oneAPI

Gaudi ThreadPoolSvc will own a single tbb::task_arena, with number of threads 
set on construction

Algorithms executed as std::functions passed to the arena

Extensive use of TBB data structures (e.g. tbb::concurrent_queue) is unaffected

https://www.threadingbuildingblocks.org/docs/help/reference/appendices/deprecated_features/redundant/task_scheduler_init_cls.html
https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/task_cls.html
https://spec.oneapi.com/versions/latest/elements/oneTBB/source/task_scheduler/task_arena/task_arena_cls.html


3

Quirks and future developments

Gaudi ThreadPoolSvc finalises all threads (i.e. TLS) by using a boost::barrier
 - Relies on knowing exactly how many threads were used
 - Charles reported TBB sometimes using extra threads and idling others: slides
 - In my limited testing, did observe threads used > threads requested in some 
jobs, implying some threads not finalised
 - Minor issue: sometimes fewer threads are used than requested, until finalise

CMS makes extensive use of tbb::task_group
 - At the top level there’s still a single arena to set thread number
 - Task groups used for smarter recycling of threads within a single event for CPU 
cache reuse (ask Chris), potentially this could be added to Gaudi
 - tbb::task_arena allows us to oversubscribe CPU, but do we actually need this?

Gaudi is intended to support internal multithreading in algorithms
 - In practise this is not used widely / at all
 - Testing with tbb::parallel_for suggests that it behaves as expected within the 
new task arena, does not require a public Gaudi interface to the arena
 - Another potential use for task groups?

We use std::threads in some places as well…
 - Gaudi scheduler
 - Message service (logging)

http://annwm.lbl.gov/pres/2018.12.05_20.57.10/2018.12.06_tbbThreads.pdf


4

Performance

Gaudi master and the proposed tbb::task_arena MR have similar performance on 
a less-than-perfect test machine
 - were some other people using it, and I think it limits jobs to 8 of 32 cores
 - basically this just needs better testing

Arena mean 270 sec, std dev 20
Master mean 261 sec, std dev 21

AtlasMCRecoScenario test, 100 events, N slots == N threads

https://gitlab.cern.ch/gaudi/Gaudi/-/merge_requests/1193


5

Performance

Gaudi master and the proposed tbb::task_arena MR have similar performance on 
a less-than-perfect test machine
 - were some other people using it, and I think it limits jobs to 8 of 32 cores
 - basically this just needs better testing

Three jobs in this set used more threads than requested, but there’s no clear 
pattern – occurred in both code branches, faster and slower jobs

https://gitlab.cern.ch/gaudi/Gaudi/-/merge_requests/1193

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

