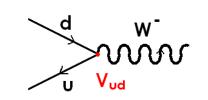
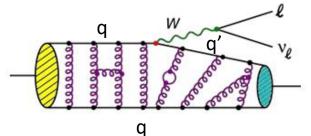


Outline


- Introduction
- The LHCb experiment
- Rare B decays
- Semileptonic B decays
- Spectroscopy
- The future

Introduction

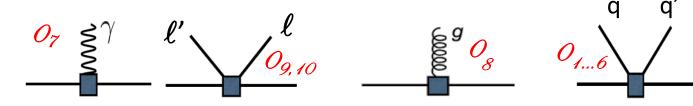
• In the Standard Model of Particle Physics, transitions between different quarks are governed by the CKM mechanism:



$$V_{
m CKM} = \left(egin{array}{ccc} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{array}
ight)$$

 The amplitude of a hadron decay process can be described using Effective Field Theories: Operator Product Expansion (OPE)

$$A(M \to F) = \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_{i} V_{CKM}^i C_i(\mu) \langle F | O_i(\mu) | M \rangle$$



Hadronic Matrix Elements

Introduction

$$A(M \to F) = \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | O_i(\mu) | M \rangle$$
 CKM Wilson Hadronic Matrix couplings Coefficients (μ = scale)

 \rightarrow OPE: a series of effective vertices multiplied by effective coupling constants C_i .

Electroweak scale $\sim 1/M_W$ New Physics scale $\sim 1/M_{NP}$

$$C_i = C_i^{SM} + C_i^{NP}$$
 $C'_i = C'_i^{SM} + C'_i^{NP}$
Primed $C'_i \rightarrow \text{right handed currents:}$
suppressed in SM

4

Why B decays?

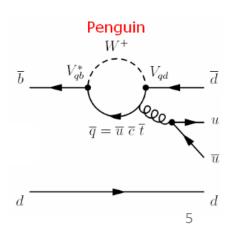
- The b-quark is the heaviest quark forming hadronic bound states ($m^4.7$ GeV)
- Must decay outside the 3rd family
 - \rightarrow Long lifetime (~1.6 ps)
 - → Many accessible decay channels (small BR's)

Good for experimentalists!

• Type of processes:

Dominant: $b \rightarrow c$ (favoured) and $b \rightarrow u$ (suppressed)

Rare: Flavour Changing Neutral Current (FCNC): $b \rightarrow s,d$

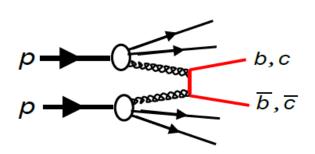


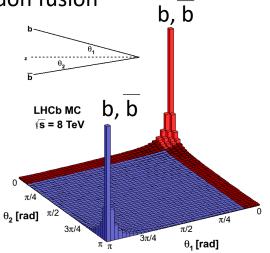
Flavour oscillations and CP violation

Ideal place to probe New Physics effects!

Good for theorists!

The LHCb experiment **LHCb ATLAS** ALICE LHC: large proton-proton collider at CERN with an energy of 13TeV

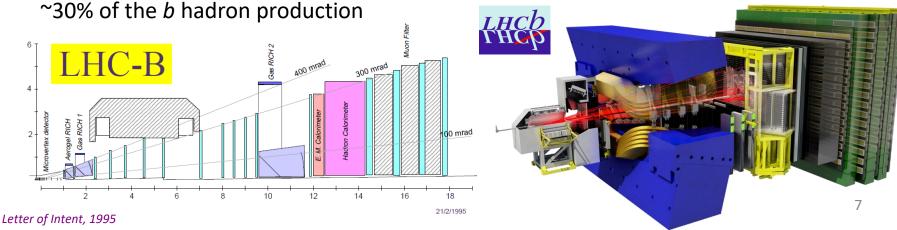

The LHCb experiment


ullet The $b\overline{b}$ cross section in pp collisions is large, mainly from gluon fusion

~ 300 μb @ vs=7 TeV

~ 600 μb @ vs=13 TeV

[PRL 118 (2017) 052002] [JHEP 02 (2021) 023]



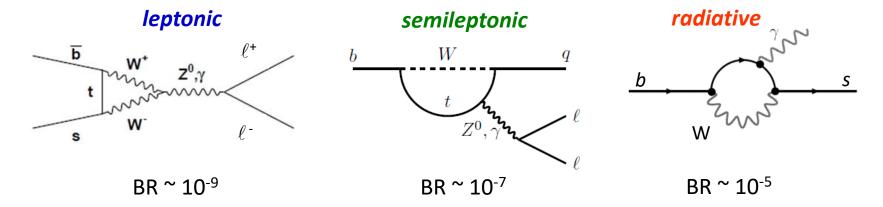
The *b* quarks hadronize in B, B_s , $B^*_{(s)}$, *b*-baryons...

- → average B meson momentum ~ 80 GeV
- The LHCb idea: to build a single-arm forward spectrometer:

~ 4% of the solid angle (2 < η < 5),

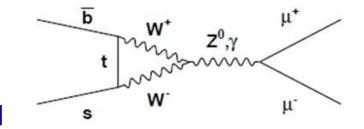
The LHCb experiment

3 (Run1) + 6 (Run2) fb⁻¹ recorded from 2011 till 2018


LHCb Integrated Recorded Luminosity in pp, 2010-2018

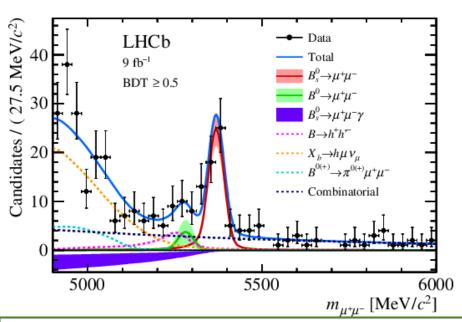
Rare B decays

- $b \rightarrow s,d$ quark transitions are Flavor Changing Neutral Currents (FCNCs),
 - → in the SM they only can occur through loops (penguin and box diagrams), excellent probe for physics beyond the SM

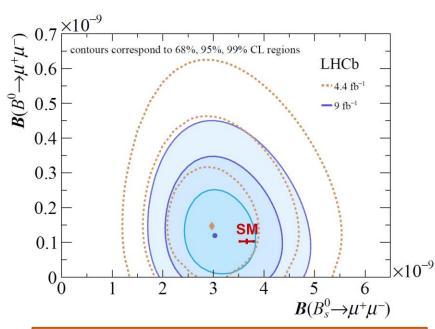

Experimentally \rightarrow leptons/photons with high transverse momenta **Theoretically** \rightarrow observables can be calculated in terms of Wilson coefficients

Ex:
$$\Gamma(B_s^0 \to \mu^+ \mu^-) \sim \frac{G_F^2 \alpha^2}{64\pi^3} m_{Bs}^2 f_{Bs}^2 |V_{tb} V_{ts}|^2 |2m_\mu C_{10}|^2$$

Hadronic uncertainties in decay constants or form factors



- Very rare decay: FCNC and helicity suppressed $BR_{SM} = 3.66(14) \times 10^{-9}$
- Searched for over the last 30 years,
 observed by LHCb and CMS [Nature 522 (2015) 68]

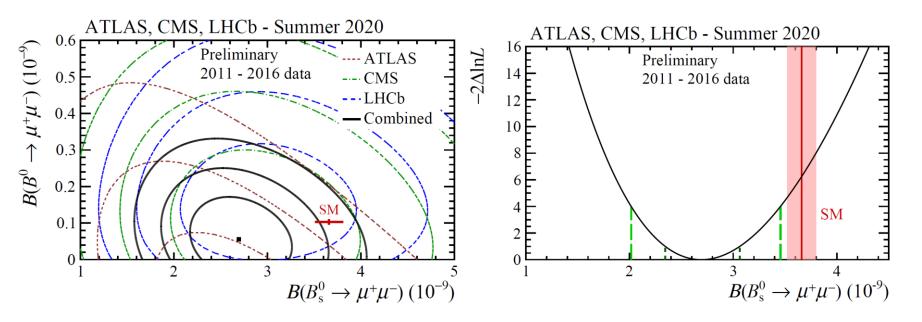


• New results by LHCb (Run1+Run2 = 9fb⁻¹):

[arXiv:2108.09283 and 2108.09284v2 [hep-ex]]

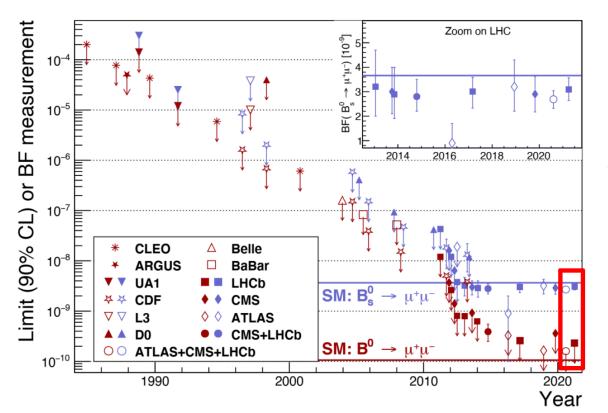
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09 + 0.46 + 0.15) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$$

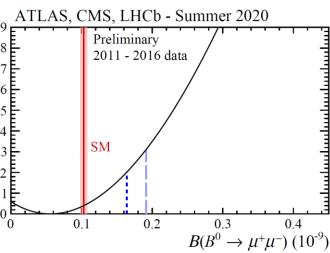

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) < 2.0 \times 10^{-9}$$

Also measured by ATLAS and CMS (2011-2016 data), combined result*:

[CMS PAS BPH-20-003]

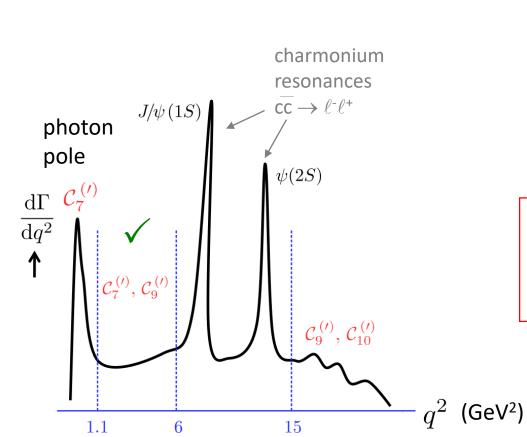

ATLAS [JHEP04(2019)098] CMS [JHEP04(2020)188] LHCb [PRL118(2017)191801]

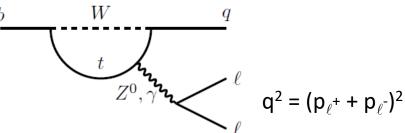
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69 \, {}^{+\, 0.37}_{-\, 0.35}) \times 10^{-9}$$



Below, but compatible with the SM at 2.1σ

• Even more rare! (BR_{SM} \sim 10⁻¹⁰), still not observed:

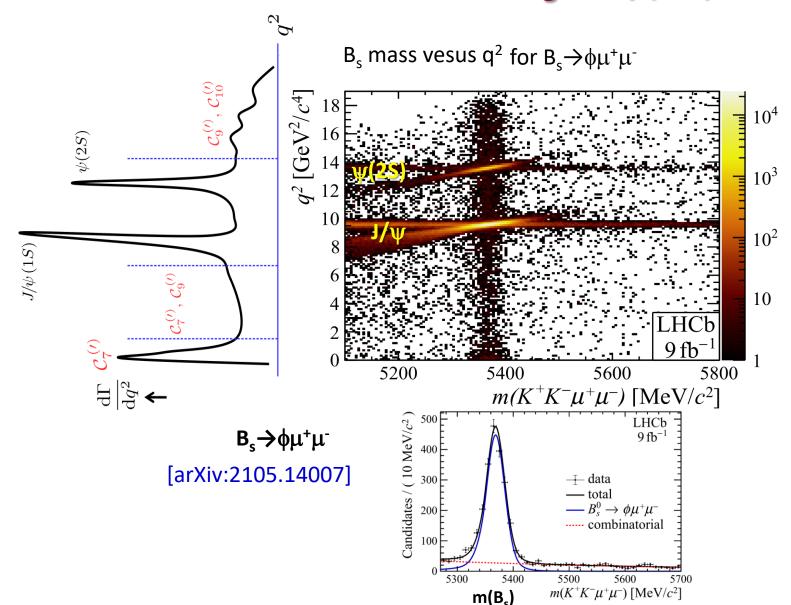

[CMS PAS BPH-20-003]



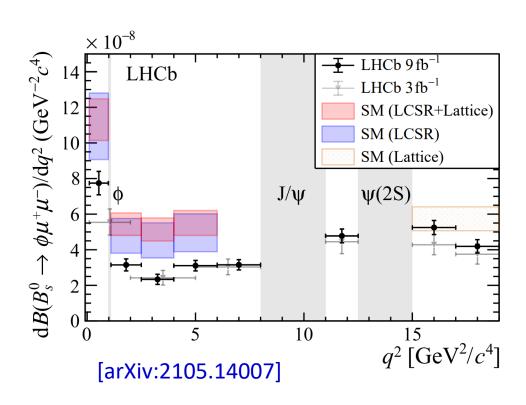
ATLAS [JHEP04(2019)098] CMS [JHEP04(2020)188] LHCb [PRL118(2017)191801]

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL}$$

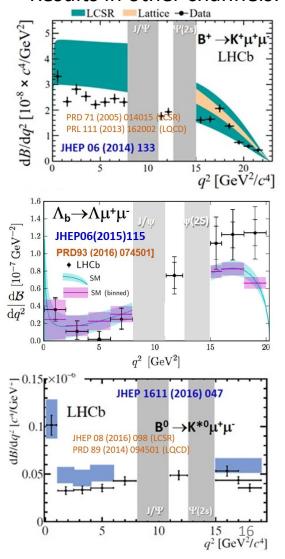
• Differential decay width: $d\Gamma/dq^2$ Each q^2 region probes different processes

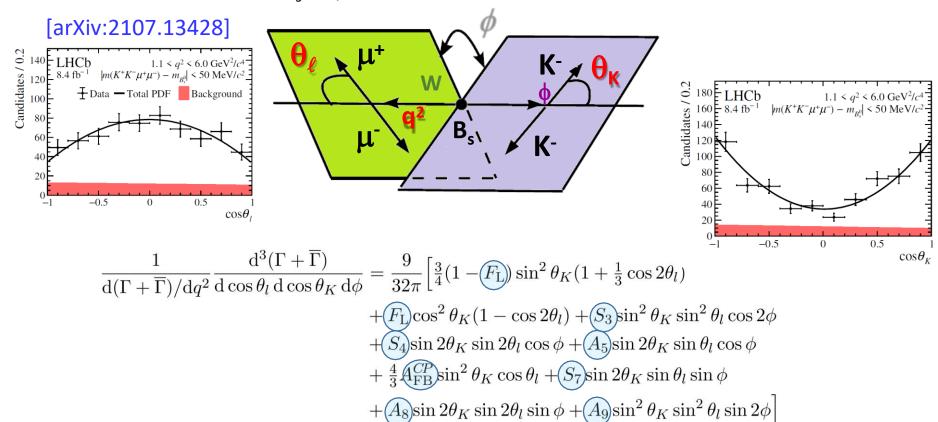

SM values (μ = m_b): $C_7 \sim$ - 0.33 $C_9 \sim$ 4.27 $C_{10} \sim$ - 4.17

(Everything else small or negligible)

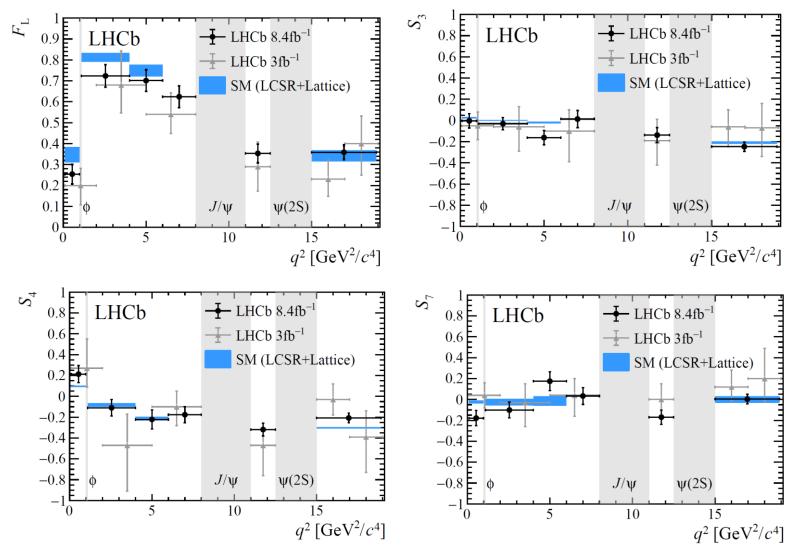

$$C_i = C_i^{SM} + C_i^{NP}$$

(Primed C'_i → right handed currents: suppressed in SM)




In the q² region 1.1-6 GeV² \rightarrow 3.6 σ away from SM predictions

Results in other channels:

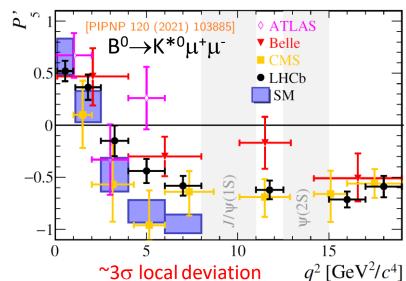


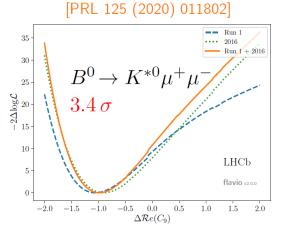
• Angular distribution in $B_s \rightarrow \phi \ell^- \ell^+$: it depends on q^2 and three angles

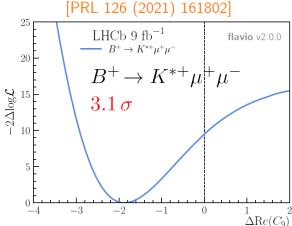
→ Function of observables related to CP-averages and asymmetries:

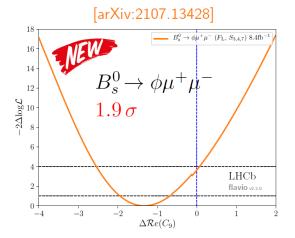
 \rightarrow In general good agreement with SM (no P₅' observable here), deviations less than 2σ

"Optimized observables", with form factor cancellations

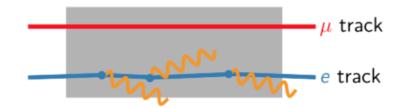

[JHEP 10 ('18) 047] [PRL 118 ("17) 111801] [PLB 781 ("18) 517]


[JHEP 05 (2013) 137]


$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$


Two new analyses by LHCb with full data:

- ► Angular analysis of B⁺ \to K*⁺ μ ⁺ μ ⁻ [PRL 126 (2021) 161802]
- ► Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [PRL 125 (2020) 011802]

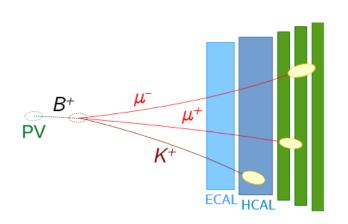

 \rightarrow Negative shift of Re(C₉) preferred over SM hypothesis at level of 2-3 σ

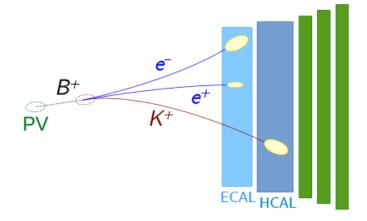
In the SM all leptons are expected to behave in the same way

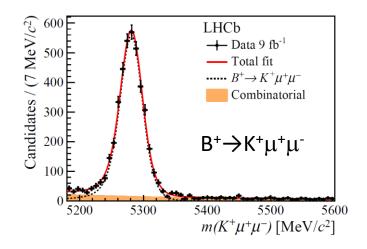
Test of lepton universality:

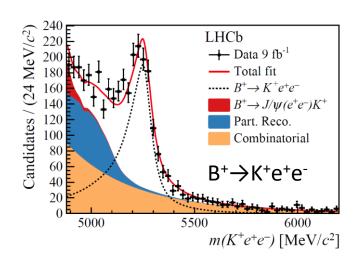
$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1.000 + O(m_{\mu}^2/m_b^2)$$

- Precise theory prediction due to cancellation of hadronic form factor uncertainties
- Challenge: bremsstrahlung by electrons

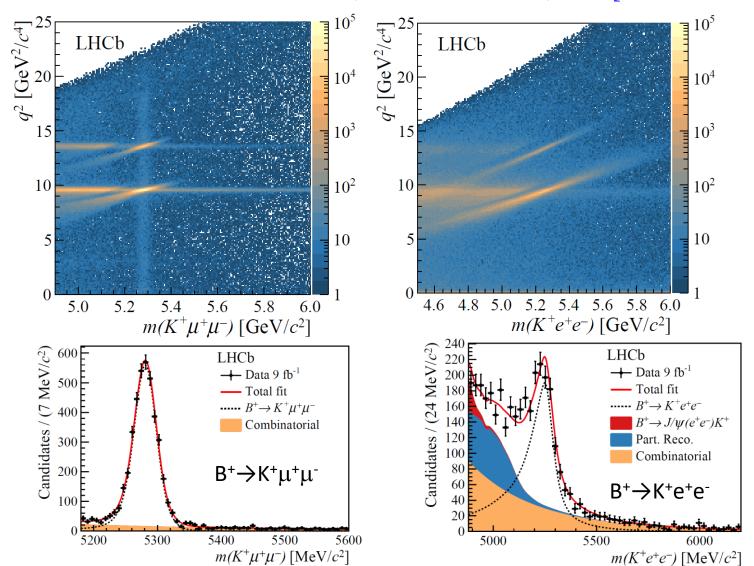

 Experimentally, we perform a double ratio to cancel systematic uncertainties


$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$$



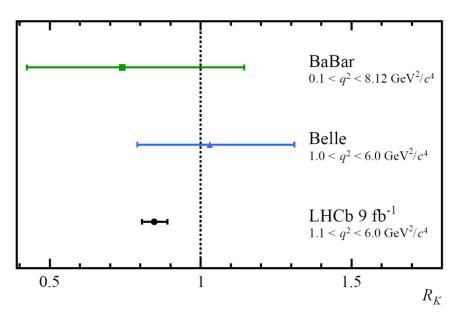

Reconstructed B mass for $B^+ \rightarrow K^+ \ell^+ \ell^-$ (muons vs electrons)

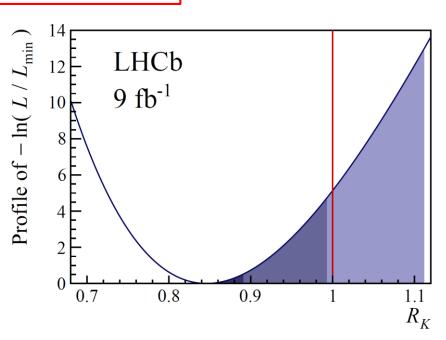
[arXiv:2103.11769]



Reconstructed B mass for $B^+ \rightarrow K^+ \ell^+ \ell^-$ (muons vs electrons)

[arXiv:2103.11769]

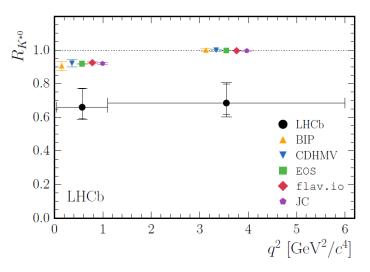



Results with full LHCb data:

$$R_K = 0.846^{+0.044}_{-0.041}$$

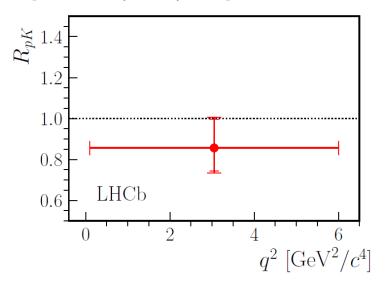
 $(1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2)$

[arXiv:2103.11769]



 \rightarrow Deviation from SM at 3.1 $\sigma \Rightarrow$ evidence of LFU violation

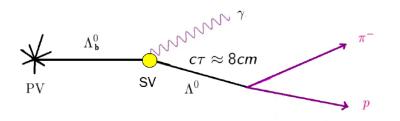
(submitted to Nature Physics)


- Previous results in other channels:
- → LHCb measurement in the B \rightarrow K* μ + μ -channel, \mathbf{R}_{κ^*} , with 3fb⁻¹

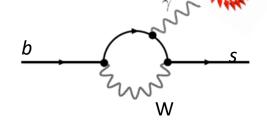
[JHEP 08 (2017) 055]

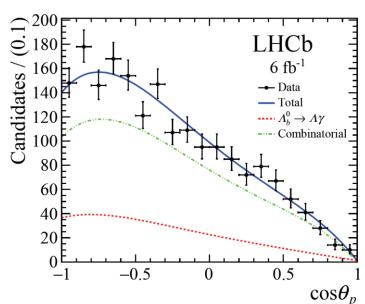
→ LHCb measurement in the Λ_b → pK $\mu^+\mu^-$ channel, \mathbf{R}_{pK} , with 5fb⁻¹

[JHEP 05 (2020) 040]

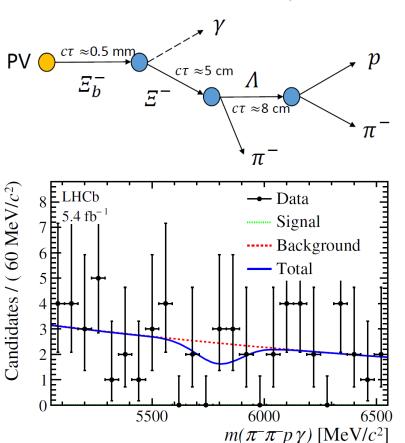


- More analysis on R_x ongoing... see tomorrow's CERN seminar!
 https://indico.cern.ch/event/1065152/
- And Belle II entering in the game... [BELLE2-NOTE-PL-2020-014]


Rare B decays: $\Lambda_b \rightarrow \Lambda \gamma$


First measurement of the **photon polarization** in a b-baryon system!
 (Expected to be left handed in the SM) [LHCb-PAPER-2021-03]

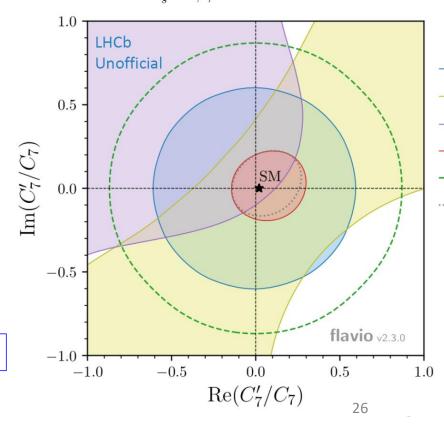
$$\alpha_{\gamma} = \frac{\gamma_L - \gamma_R}{\gamma_L + \gamma_R}$$


$$\alpha_{\gamma} = 0.82^{+0.17}_{-0.26} \text{ (stat.)}^{+0.04}_{-0.13} \text{ (syst.)}$$

In agreement with SM

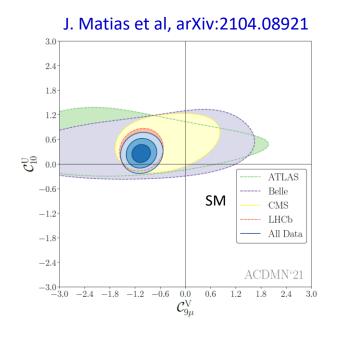
Rare B decays: $\Xi_b \rightarrow \Xi \gamma$

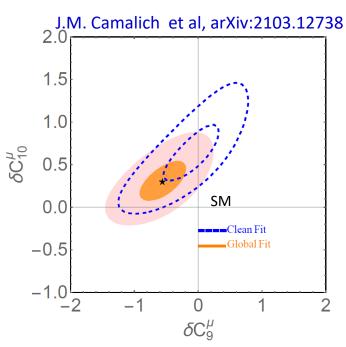
• Search for other channels: $\Xi_b \rightarrow \Xi^- \gamma$:



$$\mathcal{B}(\Xi_b^- \to \Xi^- \gamma) < 1.3 \times 10^{-4} \text{ at } 95\% \text{ CL}$$

[arXiv: 2108.07678]


• Constraints from radiative (C7(1)):


Constraints at
$$2\sigma$$
 $\mathcal{B}(B \to X_s \gamma)$ $\mathcal{B}^0 \to K^{*0} e^+ e^ \mathcal{B}^0 \to K_S^0 \pi^0 \gamma$ $\mathcal{A}_b^0 \to \Lambda \gamma$
 $\mathcal{B}_s^0 \to \phi \gamma$ Global

Rare B decays

Global fits (more than 100 observables)

New Physics hypothesis preferred over SM by more than $4 - 5\sigma$ Main effect on the $C_{9\mu}$ coefficient: **4.27**SM **-1.1**^{NP}

Triggered models with Z', leptoquarks (LQ), new fermions and scalars....

Semileptonic B decays: R_D, R_{D*}

Another test of lepton universality (now at tree level):

Ratio of semi-tauonic and semi-muonic branching fractions:

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

$$\overline{B} \stackrel{b}{=} \overline{q} \stackrel{\nabla}{=} D^{(*)}$$

Sensitive to charged Higgs bosons and leptoquarks

$$\overline{B}$$
 \overline{q} $D^{(*)}$ $\overline{\nu}_{\tau}$

SM predictions very precise : $(V_{cb}$ and form factors (partially) cancel)

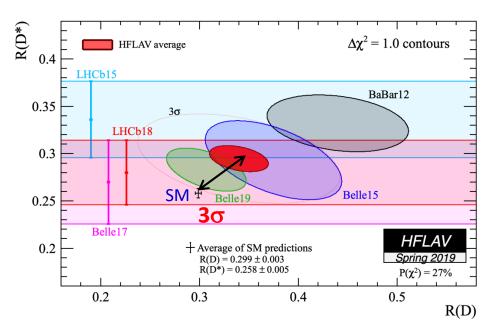
$$R(D)_{SM}$$
=0.299 \pm 0.003

$$R(D^*)_{SM} = 0.252 \pm 0.003$$

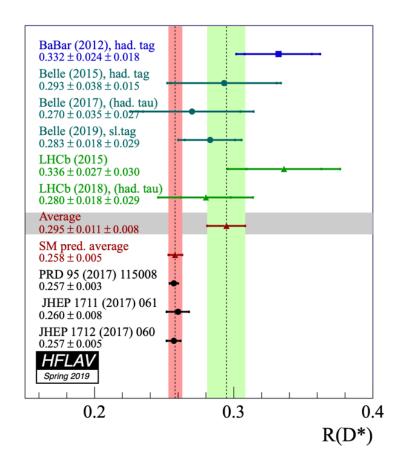
Based on HQET form factors:

[H. Na et al., PRD 92 (2015) 054510]

[Fajfer, Kamenic, Nišandižć: PRD85 (2012) 094025]

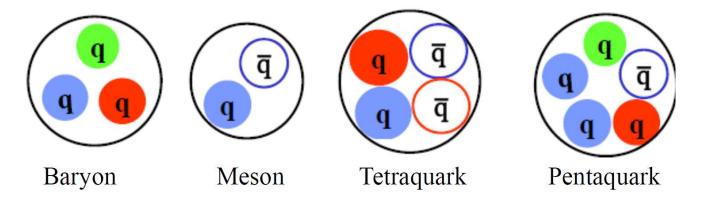

and experimental measurements (HFLAV)

[D.Bigi, Gambino, PRD 94 (2016) 094008]

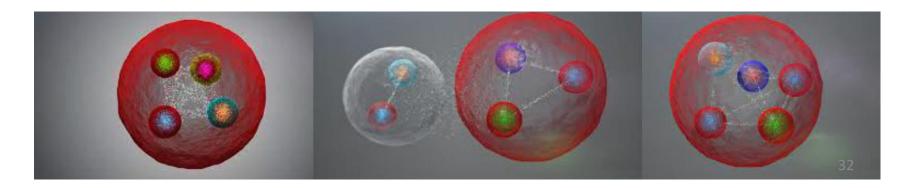

Semileptonic B decays

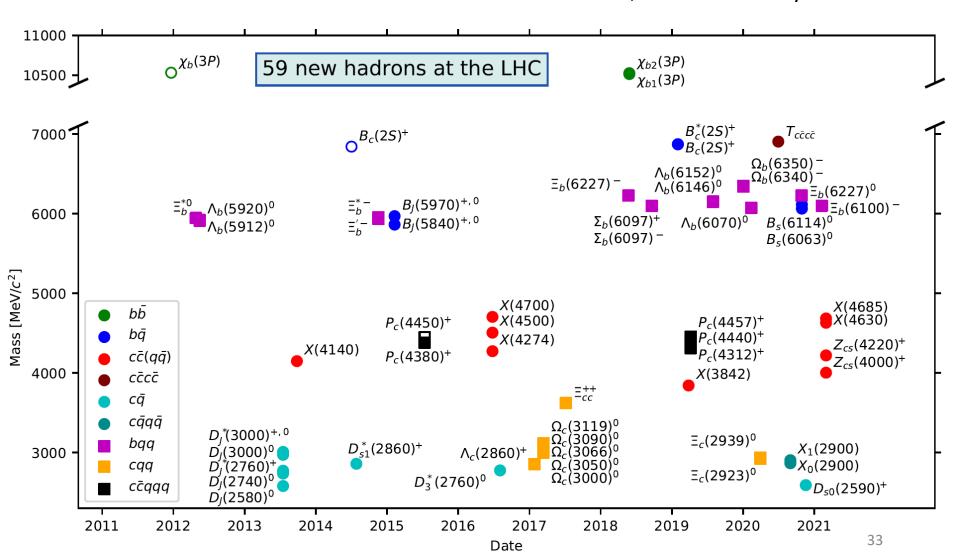
■ Last results from Belle using semileptonic tags (D and D*v) [PRL 124, (2020) 161803]

Present global picture of R_D and R_{D*}

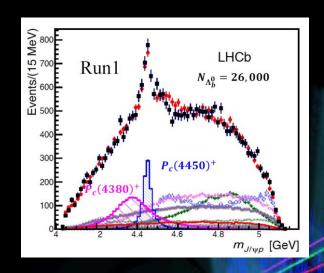


 \rightarrow Average: 3σ deviation from SM



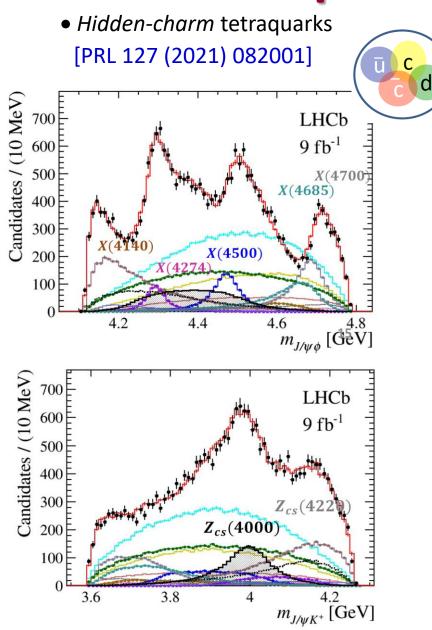

• There are several possibilities for combining quarks with color into colorless hadrons, as predicted from the origin of the Quark Model [M. Gell-Mann, PL8 (1964) 214]

- Several of these states have been announced since 1970, but have disappeared with time and new data analysis...
- Important for our understanding of the matter structure and QCD!


• More than 50 new hadrons discovered in the last decade, most of them by LHCb:

 $\Lambda_b^{0} \rightarrow J/\psi p K^- candidate$

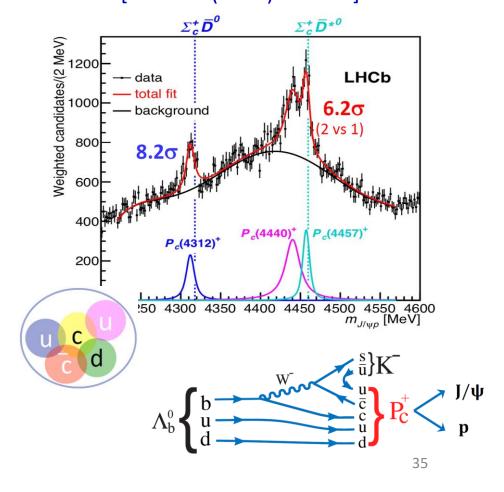
Event 251784647 Run 125013 Thu, 09 Aug 2012 05:53:58



Observation of J/ψp Resonances Consistent with

Pentaquark States

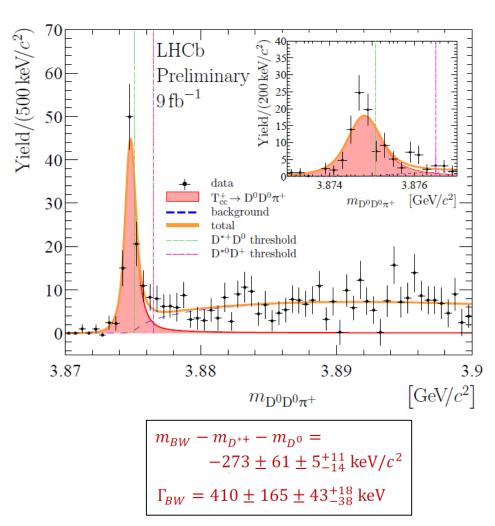
[PRL 115 (2015) 072001]


1283 citations!

3.6

3.8

• *Hidden-charm* pentaguarks: [PRL 122 (2019) 222001]



• Doubly-charmed tetraquark T^+_{cc} !

[arXiv:2109.01038 [hep-ex]]

CERN seminar: https://indico.cern.ch/event/1065144/

The future

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203+	
		Run III						R	Run IV					Run V	
LS2						LS3					LS4				
	40 MHz RADE I	L:	$L = 2 \times 10^{33}$		LHCb Consolidate: UPGRADE Ib			L	$L = 2 \times 10^{33}$ $50 fb^{-1}$		LHCb UPGRADE II		$L=1-2x \ 10^{34}$ $300 \ fb^{-1}$		
ATLAS Phase 1		L :	$= 2 \times 10$) <i>34</i>	ATLAS Phase	II UPG	RADE		$= 5 \times 10^{-1}$				HL-L $L = 5 :$		
CMS Phase 1	(Upgr		300 fb ⁻¹		CMS Phase	II UPG	RADE						3000) fb-1	
Belle 1	II.			5 ab ⁻¹		L=6	$x 10^{35}$		5	50 ab-1					

- New detector
- ► Full software trigger (30MHz)
- Event reconstruction on GPU cards
- + Turbo dedicated trigger scheme
- Installation and commissioning ongoing

► Analysis of Belle II with 5 ab⁻¹ will start to be competitive with LHCb

